Targeting IL-6 and RANKL signaling inhibits prostate cancer growth in bone

Springer Science and Business Media LLC - Tập 31 - Trang 921-933 - 2014
Yu Zheng1, Dennis Basel1,2, Shu-Oi Chow1, Colette Fong-Yee1, Sarah Kim1, Frank Buttgereit3,2, Colin R. Dunstan1,4, Hong Zhou1, Markus J. Seibel1,5
1Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
2Rheumatology and Clinical Immunology, Charité University Medicine and German Rheumatism Research Center (DRFZ), Berlin, Germany
3Berlin-Brandenburg, Center of Regenerative Therapies (BCRT), Berlin, Germany
4Department of Biomedical Engineering, University of Sydney, Sydney, Australia
5Department of Endocrinology and Metabolism, Concord Hospital, Sydney, Australia

Tóm tắt

In prostate cancer metastases to bone, cancer cell-derived cytokines stimulate RANKL expression by cells of the osteoblast lineage, which in turn activates osteoclastic bone resorption. However, it is unclear whether cells of the osteoblast lineage signal back to prostate cancer cells, and if so, whether such direct cross-talk can be targeted therapeutically. Using the human prostate cancer cell line, PC3, we identified two novel signalling pathways acting between cells of the osteoblast lineage and cancer cells. First, exposure to RANKL stimulated the expression and release of IL-6 by PC3 cells in vitro (which is known to promote RANKL expression by osteoblasts). Second, treatment of PC3 cells with IL-6 increased the expression of RANK, the cognate receptor of RANKL, and enhanced the RANKL-induced release of IL-6 by PC3 cells. Third, targeted disruption of IL-6 signaling with tocilizumab, a clinically available antibody against the human IL-6 receptor, inhibited skeletal tumor growth in vivo and reduced serum RANKL levels as well as RANK expression by PC3-derived bone tumors. Similar effects were achieved when RANK expression was knocked down in PC3 cells. In contrast, disruption of IL-6 or RANK/RANKL signalling had no effect on PC3 tumor growth in soft tissues, indicating that these signalling pathways act specifically within the bone microenvironment. In conclusion, prostate cancer cells and cells of the osteoblast lineage communicate via two inter-dependent signaling pathways, which through auto-amplification strongly enhance metastatic prostate cancer growth in bone. Both pathways may be targeted for effective therapeutic intervention.

Tài liệu tham khảo

Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176 Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425 Zheng Y, Zhou H, Brennan K, Blair JM, Modzelewski JR, Seibel MJ, Dunstan CR (2007) Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 40(2):471–478 Neudert M, Fischer C, Krempien B, Bauss F, Seibel MJ (2003) Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. Int J Cancer 107(3):468–477 Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68(1):92–104 Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT, Thompson EW (2005) The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65(11):4929–4938 Zheng Y, Zhou H, Ooi LL, Snir AD, Dunstan CR, Seibel MJ (2011) Vitamin D deficiency promotes prostate cancer growth in bone. Prostate 71(9):1012–1021 Ooi LL, Zheng Y, Zhou H, Trivedi T, Conigrave AD, Seibel MJ, Dunstan CR (2010) Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone 47(4):795–803 Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80(Suppl 8):1546–1556 Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2(6):570–572 Kamiya N, Suzuki H, Yano M, Endo T, Takano M, Komaru A, Kawamura K, Sekita N, Imamoto T, Ichikawa T (2010) Implications of serum bone turnover markers in prostate cancer patients with bone metastasis. Urology 75(6):1446–1451 Michalaki V, Syrigos K, Charles P, Waxman J (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90(12):2312–2316 George DJ, Halabi S, Shepard TF, Sanford B, Vogelzang NJ, Small EJ, Kantoff PW (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 11(5):1815–1820 Wegiel B, Bjartell A, Culig Z, Persson JL (2008) Interleukin-6 activates PI3 K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int J Cancer 122(7):1521–1529 Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campas C, Dang L, Rolfe M, Ross JS, Gascon P, Albanell J, Mellado B (2006) Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 12(18):5578–5586 Hong DS, Angelo LS, Kurzrock R (2007) Interleukin-6 and its receptor in cancer: implications for Translational Therapeutics. Cancer 110(9):1911–1928 De La Mata J, Uy HL, Guise TA, Story B, Boyce BF, Mundy GR, Roodman GD (1995) Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest 95(6):2846–2852 Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20(3):345–357 Franchimont N, Lambert C, Huynen P, Ribbens C, Relic B, Chariot A, Bours V, Piette J, Merville MP, Malaise M (2005) Interleukin-6 receptor shedding is enhanced by interleukin-1beta and tumor necrosis factor alpha and is partially mediated by tumor necrosis factor alpha-converting enzyme in osteoblast-like cells. Arthritis Rheum 52(1):84–93 Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7 Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafe M (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002 Schafer ZT, Brugge JS (2007) IL-6 involvement in epithelial cancers. J Clin Invest 117(12):3660–3663 Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326 Sohara Y, Shimada H, Minkin C, Erdreich-Epstein A, Nolta JA, DeClerck YA (2005) Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res 65(4):1129–1135 Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, Groshen SG, Seeger RC, DeClerck YA (2009) Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 69(1):329–337 Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS, Wessner LL, Martinez A, Guise TA, Chirgwin JM, Gaddy D, Suva LJ (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65(23):11001–11009 Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111(5):1138–1148 Paule B, Terry S, Kheuang L, Soyeux P, Vacherot F, de la Taille A (2007) The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol 25(5):477–489 Santini D, Perrone G, Roato I, Godio L, Pantano F, Grasso D, Russo A, Vincenzi B, Fratto ME, Sabbatini R, Della Pepa C, Porta C, Del Conte A, Schiavon G, Berruti A, Tomasino RM, Papotti M, Papapietro N, Muda AO, Denaro V, Tonini G (2011) Expression pattern of receptor activator of NFκB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol 226(3):780–784 Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696 Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17(10):1235–1241 Zheng Y, Zhou H, Fong-Yee C, Modzelewski JR, Seibel MJ, Dunstan CR (2008) Bone resorption increases tumour growth in a mouse model of osteosclerotic breast cancer metastasis. Clin Exp Metastasis 25(5):559–567 Zheng Y, Seibel M, Zhou H (2011) Methods in bone biology: cancer and bone. Osteoporosis research: animal models, 1st edn. Springer, New York Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176 Ehlers M, Grotzinger J, deHon FD, Mullberg J, Brakenhoff JP, Liu J, Wollmer A, Rose-John S (1994) Identification of two novel regions of human IL-6 responsible for receptor binding and signal transduction. J Immunol 153(4):1744–1753 Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, Wakabayashi T, Hayasaka A, Kadono S, Miyazaki T, Haraya K, Sekimori Y, Kojima T, Nabuchi Y, Aso Y, Kawabe Y, Hattori K (2011) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28(11):1203–1207 Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60(9):2747–2756 Blair JM, Zheng Y, Dunstan CR (2007) RANK ligand. Int J Biochem Cell Biol 39(6):1077–1081 Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-[gamma]. Nature 408(6812):600–605 Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58(6):1008–1015 Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, Huget P, Dirix LY (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103(5):642–646 Ignatoski KM, Friedman J, Escara-Wilke J, Zhang X, Daignault S, Dunn RL, Smith DC, Keller ET (2009) Change in markers of bone metabolism with chemotherapy for advanced prostate cancer: interleukin-6 response is a potential early indicator of response to therapy. J Interferon Cytokine Res 29(2):105–112 Nishimoto N, Kishimoto T (2008) Humanized antihuman IL-6 receptor antibody, tocilizumab. Handb Exp Pharmacol 181:151–160 Shinriki S, Jono H, Ota K, Ueda M, Kudo M, Ota T, Oike Y, Endo M, Ibusuki M, Hiraki A, Nakayama H, Yoshitake Y, Shinohara M, Ando Y (2009) Humanized Anti-Interleukin-6 Receptor Antibody Suppresses Tumor Angiogenesis and In vivo Growth of Human Oral Squamous Cell Carcinoma. Clin Cancer Res 15(17):5426–5434 Sakai A, Oda M, Itagaki M, Yoshida N, Arihiro K, Kimura A (2010) Establishment of an HS23 stromal cell-dependent myeloma cell line: fibronectin and IL-6 are critical. Int J Hematol 92(4):598–608 Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM (2006) Basic Mechanisms Responsible for Osteolytic and Osteoblastic Bone Metastases. Clin Cancer Res 12(20):6213s–6216s Ooi LL, Zheng Y, Stalgis-Bilinski K, Dunstan CR (2011) The bone remodeling environment is a factor in breast cancer bone metastasis. Bone 48(1):66–70 Zheng Y, Zhou H, Dunstan C, Sutherland RL, Seibel M (2013) The role of the bone microenvironment in skeletal metastasis. J Bone Oncol 2(1):47–57 Guise TA, Yin JJ, Thomas RJ, Dallas M, Cui Y, Gillespie MT (2002) Parathyroid hormone-related protein (PTHrP)-(1-139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone 30(5):670–676 Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107(10):1235–1244 Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, Lee KA, Zheng M, Hei YJ, Coleman RE (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97(1):59–69 Berruti A, Tucci M, Mosca A, Tarabuzzi R, Gorzegno G, Terrone C, Vana F, Lamanna G, Tampellini M, Porpiglia F, Angeli A, Scarpa RM, Dogliotti L (2005) Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease. Br J Cancer 93(6):633–638 Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377(9768):813–822 Fizazi K, Bosserman L, Gao G, Skacel T, Markus R (2013) Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial. J Urol 189(Suppl 1):S51–S58 Coleman R, Gnant M, Morgan G, Clezardin P (2012) Effects of bone-targeted agents on cancer progression and mortality. J Natl Cancer Inst 104(14):1059–1067 Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, Miller K, Sieber P, Karsh L, Damiao R, Tammela TL, Egerdie B, Van Poppel H, Chin J, Morote J, Gomez-Veiga F, Borkowski T, Ye Z, Kupic A, Dansey R, Goessl C (2012) Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379(9810):39–46