Nhắm đến EZH2 điều chỉnh các đặc tính sinh học của tế bào gốc glioma qua con đường Notch1

Guozheng Zhao1,2, Zhitong Deng2,3, Xuetao Li2, Hao Wang2, Guangliang Chen2, Ming Feng2, Youxin Zhou2
1Department of Neurosurgery, Suzhou Ninth People’s Hospital, Suzhou, China
2Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
3Department of Neurosurgery, The First Affiliated Hospital of Huzhou University, Huzhou, China

Tóm tắt

Glioma là khối u não ác tính phổ biến nhất, và hành vi của nó có liên quan chặt chẽ đến sự hiện diện của tế bào gốc glioma (GSCs). Chúng tôi phát hiện rằng chất tăng cường đồng hình số 2 (EZH2) được bày tỏ ở mức độ cao trong glioma, và sự bày tỏ này có tương quan với tiên lượng của glioblastoma multiforme (GBM) trong hai cơ sở dữ liệu: The Cancer Genome Atlas và Atlas Genom Glioma Trung Quốc. Bên cạnh đó, EZH2 được biết đến là chất điều chỉnh sự bày tỏ gen liên quan đến tính chất tế bào gốc, khả năng phát triển và xâm lấn của GSCs, điều này có thể được thực hiện thông qua việc kích hoạt các con đường STAT3 và Notch1. Hơn nữa, chúng tôi đã chứng minh hiệu ứng của chất ức chế đặc hiệu EZH2 GSK126 đối với GSCs; những kết quả này không chỉ xác nhận giả thuyết của chúng tôi mà còn cung cấp một hướng tiếp cận điều trị mới có tiềm năng cho glioma.

Từ khóa

#EZH2 #tế bào gốc glioma (GSCs) #glioma #glioblastoma multiforme (GBM) #con đường STAT3 #con đường Notch1 #chất ức chế GSK126

Tài liệu tham khảo

Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275

Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

Bianchi S, Dotti MT, Federico A (2006) Physiology and pathology of notch signalling system. J Cell Physiol 207(2):300–308

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

Chen H, Aksoy I, Gonnot F et al (2015) Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 6:7095

Chen X, Hu L, Yang H et al (2019) DHHC protein family targets different subsets of glioma stem cells in specific niches. J Exp Clin Cancer Res 38(1):25

Chillakuri CR, Sheppard D, Lea SM, Handford PA (2012) Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 23(4):421–428

Codrici E, Enciu AM, Popescu ID, Mihai S, Tanase C (2016) Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem Cells Int 2016:5728438

Dong F, Eibach M, Bartsch JW, Dolga AM, Schlomann U, Conrad C, Schieber S, Schilling O, Biniossek ML, Culmsee C, Strik H, Koller G, Carl B, Nimsky C (2015) The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro Oncol 17:1474–1485

Eich ML, Athar M, Ferguson JE, Varambally S (2020) EZH2-targeted therapies in cancer: hype or a reality. Cancer Res 80(24):5449–5458. https://doi.org/10.1158/0008-5472.CAN-20-2147

Guanizo AC, Fernando CD, Garama DJ, Gough DJ (2018) STAT3: a multifaceted oncoprotein. Growth Factors 36(1–2):1–14

Guryanova OA, Wu Q, Cheng L et al (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511

Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181(4):1126–1141

Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, Zhu YD, Diao Y, Wang AD, Lan Q (2008) Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer 8:304. https://doi.org/10.1186/1471-2407-8-304

Jahan N, Lee JM, Shah K, Wakimoto H (2017) Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus. Int J Cancer 141(8):1671–1681. https://doi.org/10.1002/ijc.30811

Jhaveri N, Chen TC, Hofman FM (2016) Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett 380(2):545–551

Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones S, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193. https://doi.org/10.1126/science.1239947

Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam DH, Lee J (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23:839–852

Li X, Tao Z, Wang H, Deng Z, Zhou Y, Du Z (2020) Dual inhibition of Src and PLK1 regulate stemness and induce apoptosis through Notch1-SOX2 signaling in EGFRvIII positive glioma stem cells (GSCs). Exp Cell Res 396(1):112261. https://doi.org/10.1016/j.yexcr.2020.112261

Liebelt BD, Shingu T, Zhou X, Ren J, Shin SA, Hu J (2016) Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells Int 2016:7849890

Lim HJ, Kim M (2020) EZH2 as a potential target for NAFLD therapy. Int J Mol Sci 21(22):8617. https://doi.org/10.3390/ijms21228617

Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8(1):14–27

Liu H, Sun Y, Qi X, Gordon RE, O’Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y, Yu C, Gu C (2019) EZH2 Phosphorylation promotes self-renewal of glioma stem-like cells through NF-κB methylation. Front Oncol 9:641. https://doi.org/10.3389/fonc.2019.00641

Ma Q, Long W, Xing C et al (2018) Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 9:2924

Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol 16(5):671–685. https://doi.org/10.1093/neuonc/not239

Nutt SL, Keenan C, Chopin M, Allan RS (2020) EZH2 function in immune cell development. Biol Chem 401(8):933–943

Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919

Pasini D, Di Croce L (2016) Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev 36:50–58

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58. https://doi.org/10.1038/nrd.2018.168

Rahal F, Capdevielle C, Rousseau B, Izotte J, Dupuy JW, Cappellen D, Chotard G, Ménard M, Charpentier J, Jecko V, Caumont C, Gimbert E, Grosset CF, Hagedorn M (2022) An EZH2 blocker sensitizes histone mutated diffuse midline glioma to cholesterol metabolism inhibitors through an off-target effect. Neurooncol Adv 4(1):018. https://doi.org/10.1093/noajnl/vdac018

Ratnam NM, Sonnemann HM, Frederico SC, Chen H, Hutchinson M, Dowdy T, Reid CM, Jung J, Zhang W, Song H, Zhang M, Davis D, Larion M, Giles AJ, Gilbert MR (2021) Reversing epigenetic gene silencing to overcome immune evasion in cns malignancies. Front Oncol 11:719091. https://doi.org/10.3389/fonc.2021.719091

Rolle CE, Sengupta S, Lesniak MS (2010) Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am 21(1):201–214

Sgrignani J, Garofalo M, Matkovic M, Merulla J, Catapano CV, Cavalli A (2018) Structural biology of STAT3 and Its implications for anticancer therapies development. Int J Mol Sci 19(6):1591

Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29

Smits M, van Rijn S, Hulleman E, Biesmans D, van Vuurden DG, Kool M, Haberler C, Aronica E, Vandertop WP, Noske DP, Würdinger T (2012) EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival. Clin Cancer Res 18(15):4048–4058. https://doi.org/10.1158/1078-0432.CCR-12-0399

Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, Ohno K (2013) Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 119(5):1145–1155. https://doi.org/10.3171/2013.7.JNS122417

Tan M, Sandanaraj E, Chong YK et al (2019) A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 10(1):3601

Tao Z, Li X, Wang H, Chen G, Feng Z, Wu Y, Yin H, Zhao G, Deng Z, Zhao C, Li Y, Sun T, Zhou Y (2020) BRD4 regulates self-renewal ability and tumorigenicity of glioma-initiating cells by enrichment in the Notch1 promoter region. Clin Transl Med 10(6):181. https://doi.org/10.1002/ctm2.181

Van Aller GS, Pappalardi MB, Ott HM, Diaz E, Brandt M, Schwartz BJ, Miller WH, Dhanak D, McCabe MT, Verma SK, Creasy CL, Tummino PJ, Kruger RG (2014) Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. ACS Chem Biol 9(3):622–629. https://doi.org/10.1021/cb4008748

Verma A, Singh A, Singh MP, Nengroo MA, Saini KK, Satrusal SR, Khan MA, Chaturvedi P, Sinha A, Meena S, Singh AK, Datta D (2022) EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nat Commun 13(1):7344. https://doi.org/10.1038/s41467-022-35059-x

Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

Wen Y, Cai J, Hou Y, Huang Z, Wang Z (2017) Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 8(23):37974–37990

Weng HR, Taing K, Chen L, Penney A (2023) EZH2 Methyltransferase regulates neuroinflammation and neuropathic pain. Cells 12(7):1758. https://doi.org/10.3390/cells12071058

Yang Q, Zhao S, Shi Z, Cao L, Liu J, Pan T, Zhou D, Zhang J (2021) Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J Exp Clin Cancer Res 40:120

Yi L, Zhou X, Li T et al (2019) Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin Cancer Res 38(1):339

Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

Zhai Y, Li G, Li R et al (2020) Single-Cell RNA-sequencing shift in the interaction pattern between glioma stem cells and immune cells during tumorigenesis. Front Immunol 11:581209

Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q, Liu Q (2017) Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2–NOTCH1 Signaling Axis. Int J Biol Sci 13:245–253