Targeting Cyclic Nucleotide Phosphodiesterase in the Heart: Therapeutic Implications

Journal of Cardiovascular Translational Research - Tập 3 Số 5 - Trang 507-515 - 2010
Clint L. Miller1, Chen Yan1
1Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY, 14642, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bender, A. T., & Beavo, J. A. (2006). Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacological Reviews, 58, 488–520.

Movsesian, M. A., & Alharethi, R. (2002). Inhibitors of cyclic nucleotide phosphodiesterase PDE3 as adjunct therapy for dilated cardiomyopathy. Expert Opinion on Investigational Drugs, 11, 1529–1536.

Jaski, B. E., Fifer, M. A., Wright, R. F., Braunwald, E., & Colucci, W. S. (1985). Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose–response relationships and comparison to nitroprusside. Journal of Clinical Investigation, 75, 643–649.

Galie, N., Rubin, L. J., & Simonneau, G. (2010). Phosphodiesterase inhibitors for pulmonary hypertension. The New England Journal of Medicine, 362, 559–560, author reply 560.

Ghofrani, H. A., Osterloh, I. H., & Grimminger, F. (2006). Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews. Drug Discovery, 5, 689–702.

Kumar, P., Francis, G. S., & Tang, W. H. (2009). Phosphodiesterase 5 inhibition in heart failure: Mechanisms and clinical implications. Nature Reviews Cardiology, 6, 349–355.

Kukreja, R. C., Salloum, F., Das, A., Ockaili, R., Yin, C., Bremer, Y. A., et al. (2005). Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascular Pharmacology, 42, 219–232.

Sonnenburg, W. K., Seger, D., & Beavo, J. A. (1993). Molecular cloning of a cDNA encoding the “61-kDa” calmodulin-stimulated cyclic nucleotide phosphodiesterase. Tissue-specific expression of structurally related isoforms. The Journal of Biological Chemistry, 268, 645–652.

Yan, C., Kim, D., Aizawa, T., & Berk, B. C. (2003). Functional interplay between angiotensin II and nitric oxide: Cyclic GMP as a key mediator. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 26–36.

Nagel, D. J., Aizawa, T., Jeon, K. I., Liu, W., Mohan, A., Wei, H., et al. (2006). Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circulation Research, 98, 777–784.

Bender, A. T., & Beavo, J. A. (2006). PDE1B2 regulates cGMP and a subset of the phenotypic characteristics acquired upon macrophage differentiation from a monocyte. Proceedings of the National Academy of Sciences of the United States of America, 103, 460–465.

Miller, C. L., Oikawa, M., Cai, Y., Wojtovich, A. P., Nagel, D. J., Xu, X., et al. (2009). Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circulation Research, 105, 956–964.

Rybalkin, S. D., Rybalkina, I., Beavo, J. A., & Bornfeldt, K. E. (2002). Cyclic nucleotide phosphodiesterase 1C promotes human arterial smooth muscle cell proliferation. Circulation Research, 90, 151–157.

Han, P., Werber, J., Surana, M., Fleischer, N., & Michaeli, T. (1999). The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. The Journal of Biological Chemistry, 274, 22337–22344.

Dunkern, T. R., & Hatzelmann, A. (2007). Characterization of inhibitors of phosphodiesterase 1C on a human cellular system. The FEBS Journal, 274, 4812–4824.

Wallis, R. M., Corbin, J. D., Francis, S. H., & Ellis, P. (1999). Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. The American Journal of Cardiology, 83, 3C–12C.

Vandeput, F., Wolda, S. L., Krall, J., Hambleton, R., Uher, L., McCaw, K. N., et al. (2007). Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. The Journal of Biological Chemistry, 282, 32749–32757.

Loughney, K., Martins, T. J., Harris, E. A., Sadhu, K., Hicks, J. B., Sonnenburg, W. K., et al. (1996). Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. The Journal of Biological Chemistry, 271, 796–806.

Clapham, J. C., & Wilderspin, A. F. (2001). Cloning of dog heart PDE1A—A first detailed characterization at the molecular level in this species. Gene, 268, 165–171.

Yanaka, N., Kurosawa, Y., Minami, K., Kawai, E., & Omori, K. (2003). cGMP-phosphodiesterase activity is up-regulated in response to pressure overload of rat ventricles. Bioscience, Biotechnology, and Biochemistry, 67, 973–979.

Bode, D. C., Kanter, J. R., & Brunton, L. L. (1991). Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circulation Research, 68, 1070–1079.

Lukowski, R., Rybalkin, S. D., Loga, F., Leiss, V., Beavo, J. A., & Hofmann, F. (2010). Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 107, 5646–5651.

Patrucco, E., Albergine, M. S., Santana, L. F., & Beavo, J. A. (2010). Phosphodiesterase 8A (PDE8A) regulates excitation–contraction coupling in ventricular myocytes. Journal of Molecular and Cell Cardiology, 49, 330–333.

Schermuly, R. T., Pullamsetti, S. S., Kwapiszewska, G., Dumitrascu, R., Tian, X., Weissmann, N., et al. (2007). Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: Target for reverse-remodeling therapy. Circulation, 115, 2331–2339.

Dittrich, M., Jurevicius, J., Georget, M., Rochais, F., Fleischmann, B., Hescheler, J., et al. (2001). Local response of L-type Ca(2+) current to nitric oxide in frog ventricular myocytes. Journal de Physiologie, 534, 109–121.

Mery, P. F., Pavoine, C., Belhassen, L., Pecker, F., & Fischmeister, R. (1993). Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. The Journal of Biological Chemistry, 268, 26286–26295.

Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., Benardeau, A., Mercadier, J. J., et al. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation, 99, 2710–2718.

Mery, P. F., Lohmann, S. M., Walter, U., & Fischmeister, R. (1991). Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 88, 1197–1201.

Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., & Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 142, 136–143.

Mongillo, M., Tocchetti, C. G., Terrin, A., Lissandron, V., Cheung, Y. F., Dostmann, W. R., et al. (2006). Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circulation Research, 98, 226–234.

Castro, L. R., Verde, I., Cooper, D. M., & Fischmeister, R. (2006). Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation, 113, 2221–2228.

Diebold, I., Djordjevic, T., Petry, A., Hatzelmann, A., Tenor, H., Hess, J., et al. (2009). Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circulation Research, 104, 1169–1177.

Shakur, Y., Holst, L. S., Landstrom, T. R., Movsesian, M., Degerman, E., & Manganiello, V. (2001). Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Progress in Nucleic Acid Research and Molecular Biology, 66, 241–277.

Choi, Y. H., Ekholm, D., Krall, J., Ahmad, F., Degerman, E., Manganiello, V. C., et al. (2001). Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes. The Biochemical Journal, 353, 41–50.

Liu, Y., Shakur, Y., Yoshitake, M., Kambayashi, & Ji, J. (2001). Cilostazol (pletal): A dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovascular Drug Reviews, 19, 369–386.

Patrucco, E., Notte, A., Barberis, L., Selvetella, G., Maffei, A., Brancaccio, M., et al. (2004). PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell, 118, 375–387.

Voigt, P., Dorner, M. B., & Schaefer, M. (2006). Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. The Journal of Biological Chemistry, 281, 9977–9986.

Sun, B., Li, H., Shakur, Y., Hensley, J., Hockman, S., Kambayashi, J., et al. (2007). Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cellular Signalling, 19, 1765–1771.

Benotti, J. R., Grossman, W., Braunwald, E., Davolos, D. D., & Alousi, A. A. (1978). Hemodynamic assessment of amrinone. A new inotropic agent. The New England Journal of Medicine, 299, 1373–1377.

Baim, D. S., McDowell, A. V., Cherniles, J., Monrad, E. S., Parker, J. A., Edelson, J., et al. (1983). Evaluation of a new bipyridine inotropic agent—milrinone—in patients with severe congestive heart failure. The New England Journal of Medicine, 309, 748–756.

DiBianco, R., Shabetai, R., Kostuk, W., Moran, J., Schlant, R. C., & Wright, R. (1989). A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. The New England Journal of Medicine, 320, 677–683.

Xamoterol in severe heart failure. (1990). The Xamoterol in severe heart failure study group. Lancet, 336, 1–6.

Oliva, F., Latini, R., Politi, A., Staszewsky, L., Maggioni, A. P., Nicolis, E., et al. (1999). Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. American Heart Journal, 138, 247–253.

Ding, B., Abe, J., Wei, H., Huang, Q., Walsh, R. A., Molina, C. A., et al. (2005). Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: Implication in heart failure. Circulation, 111, 2469–2476.

Ding, B., Abe, J., Wei, H., Xu, H., Che, W., Aizawa, T., et al. (2005). A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 14771–14776.

Tomita, H., Nazmy, M., Kajimoto, K., Yehia, G., Molina, C. A., & Sadoshima, J. (2003). Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Circulation Research, 93, 12–22.

Mioduszewska, B., Jaworski, J., & Kaczmarek, L. (2003). Inducible cAMP early repressor (ICER) in the nervous system—A transcriptional regulator of neuronal plasticity and programmed cell death. Journal of Neurochemistry, 87, 1313–1320.

Jaworski, J., Mioduszewska, B., Sanchez-Capelo, A., Figiel, I., Habas, A., Gozdz, A., et al. (2003). Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. The Journal of Neuroscience, 23, 4519–4526.

Yan, C., Miller, C. L., & Abe, J. (2007). Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circulation Research, 100, 489–501.

Packer, M., Carver, J. R., Rodeheffer, R. J., Ivanhoe, R. J., DiBianco, R., Zeldis, S. M., et al. (1991). Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. The New England Journal of Medicine, 325, 1468–1475.

Yan, C., Ding, B., Shishido, T., Woo, C. H., Itoh, S., Jeon, K. I., et al. (2007). Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circulation Research, 100, 510–519.

Abi-Gerges, A., Richter, W., Lefebvre, F., Mateo, P., Varin, A., Heymes, C., et al. (2009). Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circulation Research, 105, 784–792.

Ma, D., Fu, L., Shen, J., Zhou, P., Gao, Y., Xie, R., et al. (2009). Interventional effect of valsartan on expression of inducible cAMP early repressor and phosphodiesterase 3A in rats after myocardial infarction. European Journal of Pharmacology, 602, 348–354.

Lehnart, S. E., Wehrens, X. H., Reiken, S., Warrier, S., Belevych, A. E., Harvey, R. D., et al. (2005). Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell, 123, 25–35.

Wehrens, X. H., Lehnart, S. E., Huang, F., Vest, J. A., Reiken, S. R., Mohler, P. J., et al. (2003). FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell, 113, 829–840.

Houslay, M. D., Baillie, G. S., & Maurice, D. H. (2007). cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: A molecular toolbox for generating compartmentalized cAMP signaling. Circulation Research, 100, 950–966.

Kukreja, R. C., Ockaili, R., Salloum, F., Yin, C., Hawkins, J., Das, A., et al. (2004). Cardioprotection with phosphodiesterase-5 inhibition—A novel preconditioning strategy. Journal of Molecular and Cellular Cardiology, 36, 165–173.

Kass, D. A., Champion, H. C., & Beavo, J. A. (2007). Phosphodiesterase type 5: Expanding roles in cardiovascular regulation. Circulation Research, 101, 1084–1095.

Salloum, F., Yin, C., Xi, L., & Kukreja, R. C. (2003). Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circulation Research, 92, 595–597.

Das, A., Xi, L., & Kukreja, R. C. (2005). Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. The Journal of Biological Chemistry, 280, 12944–12955.

Fisher, P. W., Salloum, F., Das, A., Hyder, H., & Kukreja, R. C. (2005). Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation, 111, 1601–1610.

Ockaili, R., Salloum, F., Hawkins, J., & Kukreja, R. C. (2002). Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. American Journal of Physiology. Heart and Circulatory Physiology, 283, H1263–1269.

Takimoto, E., Koitabashi, N., Hsu, S., Ketner, E. A., Zhang, M., Nagayama, T., et al. (2009). Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. Journal of Clinical Investigation, 119, 408–420.

Corbin, J., Rannels, S., Neal, D., Chang, P., Grimes, K., Beasley, A., et al. (2003). Sildenafil citrate does not affect cardiac contractility in human or dog heart. Current Medical Research and Opinion, 19, 747–752.

Vandeput, F., Krall, J., Ockaili, R., Salloum, F. N., Florio, V., Corbin, J. D., et al. (2009). cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. The Journal of Pharmacology and Experimental Therapeutics, 330, 884–891.

Zhang, M., Koitabashi, N., Nagayama, T., Rambaran, R., Feng, N., Takimoto, E., et al. (2008). Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cellular Signalling, 20, 2231–2236.

Schermuly, R. T., Inholte, C., Ghofrani, H. A., Gall, H., Weissmann, N., Weidenbach, A., et al. (2005). Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: Amplification by different type phosphodiesterase inhibitors. Respiratory Research, 6, 76.

Paul, G. A., Gibbs, J. S., Boobis, A. R., Abbas, A., & Wilkins, M. R. (2005). Bosentan decreases the plasma concentration of sildenafil when coprescribed in pulmonary hypertension. British Journal of Clinical Pharmacology, 60, 107–112.

Borlaug, B. A., Melenovsky, V., Marhin, T., Fitzgerald, P., & Kass, D. A. (2005). Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation, 112, 2642–2649.

Takimoto, E., Champion, H. C., Li, M., Belardi, D., Ren, S., Rodriguez, E. R., et al. (2005). Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Natural Medicines, 11, 214–222.

Salloum, F. N., Chau, V. Q., Hoke, N. N., Abbate, A., Varma, A., Ockaili, R. A., et al. (2009). Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G-dependent generation of hydrogen sulfide. Circulation, 120, S31–S36.

Pokreisz, P., Vandenwijngaert, S., Bito, V., Van den Bergh, A., Lenaerts, I., Busch, C., et al. (2009). Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation, 119, 408–416.

Nagendran, J., Archer, S. L., Soliman, D., Gurtu, V., Moudgil, R., Haromy, A., et al. (2007). Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation, 116, 238–248.

Traverse, J. H., Chen, Y. J., Du, R., & Bache, R. J. (2000). Cyclic nucleotide phosphodiesterase type 5 activity limits blood flow to hypoperfused myocardium during exercise. Circulation, 102, 2997–3002.

Jackson, G. (2001). Phosphodiesterase 5 inhibition: Effects on the coronary vasculature. International Journal of Clinical Practice, 55, 183–188.

Brindis, R. G., & Kloner, R. A. (2003). Sildenafil in patients with cardiovascular disease. The American Journal of Cardiology, 92, 26M–36M.

Sahara, M., Sata, M., Morita, T., Nakajima, T., Hirata, Y., & Nagai, R. (2010). A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1315–1324.

Pyriochou, A., Zhou, Z., Koika, V., Petrou, C., Cordopatis, P., Sessa, W. C., et al. (2007). The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. Journal of Cellular Physiology, 211, 197–204.

Soderling, S. H., Bayuga, S. J., & Beavo, J. A. (1998). Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 95, 8991–8996.

Salloum, F. N., Abbate, A., Das, A., Houser, J. E., Mudrick, C. A., Qureshi, I. Z., et al. (2008). Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. American Journal of Physiology. Heart and Circulatory Physiology, 294, H1398–1406.

Rochais, F., Abi-Gerges, A., Horner, K., Lefebvre, F., Cooper, D. M., Conti, M., et al. (2006). A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circulation Research, 98, 1081–1088.

Verde, I., Vandecasteele, G., Lezoualc’h, F., & Fischmeister, R. (1999). Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. British Journal of Pharmacology, 127, 65–74.

Vandecasteele, G., Verde, I., Rucker-Martin, C., Donzeau-Gouge, P., & Fischmeister, R. (2001). Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. Journal de Physiologie, 533, 329–340.

Malecot, C. O., Bers, D. M., & Katzung, B. G. (1986). Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: Role of the sarcoplasmic reticulum and transmembrane calcium influx. Circulation Research, 59, 151–162.

Yano, M., Kohno, M., Ohkusa, T., Mochizuki, M., Yamada, J., Hisaoka, T., et al. (2000). Effect of milrinone on left ventricular relaxation and Ca(2+) uptake function of cardiac sarcoplasmic reticulum. American Journal of Physiology. Heart and Circulatory Physiology, 279, H1898–1905.

Baillie, G. S., Sood, A., McPhee, I., Gall, I., Perry, S. J., Lefkowitz, R. J., et al. (2003). beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proceedings of the National Academy of Sciences of the United States of America, 100, 940–945.

Das, A., Ockaili, R., Salloum, F., & Kukreja, R. C. (2004). Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1455–1460.

Senzaki, H., Smith, C. J., Juang, G. J., Isoda, T., Mayer, S. P., Ohler, A., et al. (2001). Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. The FASEB Journal, 15, 1718–1726.