Targeted next-generation sequencing identifies the disruption of the SHANK3 and RYR2 genes in a patient carrying a de novo t(1;22)(q43;q13.3) associated with signs of Phelan-McDermid syndrome
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jacobs PA, Browne C, Gregson N, Joyce C, White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992;29(2):103–8. https://doi.org/10.1136/jmg.29.2.103.
Mayeur A, Ahdad N, Hesters L, Brisset S, Romana S, Tosca L, Tachdjian G, Frydman N. Chromosomal translocations and semen quality: a study on 144 male translocation carriers. Reprod BioMed Online. 2019;38(1):46–55. https://doi.org/10.1016/j.rbmo.2018.10.003.
Ozawa N, Maruyama T, Nagashima T, Ono M, Arase T, Ishimoto H, Yoshimura Y. Pregnancy outcomes of reciprocal translocation carriers who have a history of repeated pregnancy loss. Fertil Steril. 2008;90(4):1301–4. https://doi.org/10.1016/j.fertnstert.2007.09.051.
Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991;49(5):995–1013.
Halgren C, Nielsen NM, Nazaryan-Petersen L, Silahtaroglu A, Collins RL, Lowther C, et al. Risks and recommendations in prenatally detected De novo balanced chromosomal rearrangements from assessment of long-term outcomes. Am J Hum Genet. 2018;102(6):1090–103. https://doi.org/10.1016/j.ajhg.2018.04.005.
Redin C, Brand H, Collins RL, Kammin T, Mitchell E, Hodge JC, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2017;49(1):36–45. https://doi.org/10.1038/ng.3720.
Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, et al. Whole-genome sequencing of cytogenetically balanced chromosome translocations identifies potentially pathological gene disruptions and highlights the importance of microhomology in the mechanism of formation. Hum Mutat. 2017;38(2):180–92. https://doi.org/10.1002/humu.23146.
Schluth-Bolard C, Diguet F, Chatron N, Rollat-Farnier P-A, Bardel C, Afenjar A, et al. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders. J Med Genet. 2019;56(8):526–35. https://doi.org/10.1136/jmedgenet-2018-105778.
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet. 2019;27(8):1296–303. https://doi.org/10.1038/s41431-019-0382-9.
Backx L, Seuntjens E, Devriendt K, Vermeesch J, Van Esch H. A balanced translocation t (6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet Genome Res. 2011;132(3):135–43. https://doi.org/10.1159/000321577.
Cousin MA, Smith MJ, Sigafoos AN, Jin JJ, Murphree MI, Boczek NJ, Blackburn PR, Oliver GR, Aleff RA, Clark KJ, Wieben ED, Joshi AY, Pichurin PN, Abraham RS, Klee EW. Utility of DNA, RNA, protein, and functional approaches to solve cryptic Immunodeficiencies. J Clin Immunol. 2018;38(3):307–19. https://doi.org/10.1007/s10875-018-0499-6.
Oliver GR, Jenkinson G, Klee EW. Computational detection of known pathogenic gene fusions in a Normal tissue database and implications for genetic disease research. Front Genet. 2020;11:173. eCollection 2020. https://doi.org/10.3389/fgene.2020.00173.
Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t (12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8. https://doi.org/10.1086/321293.
Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen C-F, Rollins JD, et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet. 2014;133(7):847–59. https://doi.org/10.1007/s00439-014-1423-7.
de Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism. 2018;9:31. https://doi.org/10.1186/s13229-018-0205-9.
Yap SM, Smyth S. Ryanodine receptor 2 (RYR2) mutation: a potentially novel neurocardiac calcium channelopathy manifesting as primary generalised epilepsy. Seizure. 2019;67:11–4. https://doi.org/10.1016/j.seizure.2019.02.017.
Dutrillaux B, Viegas-Pequignot E. High resolution R- and G-banding on the same preparation. Hum Genet. 1981;57:93–5.
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.
van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
Newman S, Hermetz KE, Weckselblatt B, Rudd MK. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet. 2015;96(2):208–20. https://doi.org/10.1016/j.ajhg.2014.12.017.
Weckselblatt B, Hermetz KE, Rudd MK. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 2015;25(7):937–47. https://doi.org/10.1101/gr.191247.115.
Bonaglia MC, Kurtas NE, Errichiello E, Bertuzzo S, Beri S, Mehrjouy MM, et al. De novo unbalanced translocations have a complex history/aetiology. Hum Genet. 2018;137(10):817–29. https://doi.org/10.1007/s00439-018-1941-9.
Kim P, Yoon S, Kim N, Lee S, Ko M, Lee H, et al. ChimerDB 2.0--a knowledgebase for fusion genes updated. Nucleic Acids Res. 2010;38(Database issue):D81–5. https://doi.org/10.1093/nar/gkp982.
Ordulu Z, Wong KE, Currall BB, Ivanov AR, Pereira S, Althari S, et al. Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature. Am J Hum Genet. 2014;94(5):695–709. https://doi.org/10.1016/j.ajhg.2014.03.020.
Dubowitz V. X;autosome translocations in females with Duchenne or Becker muscular dystrophy. Nature. 1986;322(6076):291–2 PubMed PMID: 3461282.
Delahaye A, Toutain A, Aboura A, Dupont C, Tabet AC, Benzacken B, et al. Chromosome 22q13.3 deletion syndrome with a de novo interstitial 22q13.3 cryptic deletion disrupting SHANK3. Eur J Med Genet. 2009;52(5):328–32. https://doi.org/10.1016/j.ejmg.2009.05.004.
Misceo D, Rødningen OK, Barøy T, Sorte H, Mellembakken JR, Strømme P, et al. A translocation between Xq21.33 and 22q13.33 causes an intragenic SHANK3 deletion in a woman with Phelan-McDermid syndrome and hypergonadotropic hypogonadism. Am J Med Genet A. 2011;155A(2):403–8. https://doi.org/10.1002/ajmg.a.33798.
Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106(1):69–74. https://doi.org/10.1161/01.cir.0000020013.73106.d8.
Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10(3):189–94. https://doi.org/10.1093/hmg/10.3.189.
Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen B-X, Hsueh W, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest. 2008;118(6):2230–45. https://doi.org/10.1172/JCI35346.
Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff J-M, Vaksmann G, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet. 2005;42(11):863–70. https://doi.org/10.1136/jmg.2004.028993.
Ambalavanan A, Girard SL, Ahn K, Zhou S, Dionne-Laporte A, Spiegelman D, et al. De novo variants in sporadic cases of childhood onset schizophrenia. Eur J Hum Genet. 2016;24(6):944–8. https://doi.org/10.1038/ejhg.2015.218.
Hamdan FF, Srour M, Capo-Chichi J-M, Daoud H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014;10(10):e1004772. https://doi.org/10.1371/journal.pgen.1004772.
Olubando D, Hopton C, Eden J, Caswell R, Lowri Thomas N, Roberts SA, Morris-Rosendahl D, Venetucci L, Newman WG. Classification and correlation of RYR2 missense variants in individuals with catecholaminergic polymorphic ventricular tachycardia reveals phenotypic relationships. J Hum Genet. 2020. https://doi.org/10.1038/s10038-020-0738-6.
Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MTE, Wiesfeld ACP, Alders M, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116(14):1569–76. https://doi.org/10.1161/CIRCULATIONAHA.107.711606.