Taking Advantage of Bacterial Adaptation in Order to Optimize Industrial Production of Dry Propionibacterium freudenreichii

Microorganisms - Tập 7 Số 10 - Trang 477
Floriane Gaucher1,2, Valérie Gagnaire2, Hassan Rabah2, Marie-Bernadette Maillard2, Sylvie Bonnassié2, Sandrine Pottier3,4, Pierre Marchand1, Gwénaël Jan2, Philippe Blanc1, Romain Jeantet2
1Bioprox
2Science et Technologie du Lait et de l'Oeuf
3Biosit : biologie, santé, innovation technologique
4Institut des Sciences Chimiques de Rennes

Tóm tắt

Propionibacterium freudenreichii is a beneficial bacterium, used both as a probiotic and as a cheese starter. Large-scale production of P. freudenreichii is required to meet growing consumers’ demand. Production, drying and storage must be optimized, in order to guarantee high P. freudenreichii viability within powders. Compared to freeze-drying, spray drying constitutes the most productive and efficient, yet the most stressful process, imposing severe oxidative and thermal constraints. The aim of our study was to provide the tools in order to optimize the industrial production of dry P. freudenreichii. Bacterial adaptation is a well-known protective mechanism and may be used to improve bacterial tolerance towards technological stresses. However, the choice of bacterial adaptation type must consider industrial constraints. In this study, we combined (i) modulation of the growth medium composition, (ii) heat-adaptation, and (iii) osmoadaptation, in order to increase P. freudenreichii tolerance towards technological stresses, including thermal and oxidative constraints, using an experimental design. We further investigated optimal growth and adaptation conditions, by monitoring intracellular compatible solutes accumulation. Glucose addition, coupled to heat-adaptation, triggered accumulation of trehalose and of glycine betaine, which further provided high tolerance towards spray drying and storage. This work opens new perspectives for high quality and fast production of live propionibacteria at the industrial scale.

Từ khóa


Tài liệu tham khảo

Moco, 2014, Systems biology approaches for inflammatory bowel disease: Emphasis on gut microbial metabolism, Inflamm. Bowel Dis., 20, 2104, 10.1097/MIB.0000000000000116

Soularue, 2018, Enterocolitis due to immune checkpoint inhibitors: A systematic review, Gut, 67, 2056, 10.1136/gutjnl-2018-316948

Skonieczna-Żydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., and Łoniewski, I. (2018). Microbiome—the missing link in the Ggt-brain axis: Focus on its role in gastrointestinal and mental health. JCM, 7.

David, 2014, Diet rapidly and reproducibly alters the human gut microbiome, Nature, 505, 559, 10.1038/nature12820

Breton, 2016, Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res., 60, 935, 10.1002/mnfr.201500580

Ebner, 2014, Probiotics in dietary guidelines and clinical recommendations outside the European Union, WJG, 20, 16095, 10.3748/wjg.v20.i43.16095

(2019, October 22). Available online: http://www.fao.org/3/a-a0512e.pdf.

Liong, 2011, Roles of probiotic on gut health, Probiotics, Volume 21, 139, 10.1007/978-3-642-20838-6_6

2018, Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review, J. Cell. Physiol., 233, 2091, 10.1002/jcp.25911

Butel, 2018, The developing gut microbiota and its consequences for health, J. Dev. Orig. Health Dis., 9, 590, 10.1017/S2040174418000119

Fujimura, 2016, Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation, Nat. Med., 22, 1187, 10.1038/nm.4176

Colliou, 2017, Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation, J. Clin. Investig., 127, 3970, 10.1172/JCI95376

Chang, H.-Y., Chen, J.-H., Chang, J.-H., Lin, H.-C., Lin, C.-Y., and Peng, C.-C. (2017). Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: An updated meta-analysis. PLoS ONE, 12.

Milani, 2017, The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota, Microbiol. Mol. Biol. Rev., 81, e00036-17, 10.1128/MMBR.00036-17

Repa, 2015, Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) prevent NEC in VLBW infants fed breast milk but not in formula, Pediatr. Res., 77, 381, 10.1038/pr.2014.192

Roland, 1999, Lebeurrier Effect of Propionibacteria supplementation on fecal Bifidobacteria and segmental colonic transit time in healthy human subjects, Scand. J. Gastroenterol., 34, 144, 10.1080/00365529950172998

Mitsuyama, 2007, Treatment of Ulcerative Colitis with Milk Whey Culture with Propionibacterium freudenreichii 2007, J. Intest. Microbiol., 21, 143

Hojo, 2002, Effect of ingested culture of Propionibacterium freudenreichii ET-3 on fecal microflora and stool frequency in healthy females, Biosci. Microflora, 21, 115, 10.12938/bifidus1996.21.115

Seki, 2004, Effects of Fermented Milk Whey Containing Novel Bifidogenic Growth Stimulator Produced by Propionibacterium on Fecal Bacteria, Putrefactive Metabolite, Defecation Frequency and Fecal Properties in Senile Volunteers Needed Serious Nursing-Care Taking Enteral Nutrition by Tube Feeding 2004, J. Intest. Microbiol., 18, 107

Rabah, 2018, Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion, Food Res. Int., 106, 712, 10.1016/j.foodres.2018.01.035

Foligne, 2010, Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Appl. Environ. Microbiol., 76, 8259, 10.1128/AEM.01976-10

European Food Safety Authority (EFSA) (2019, October 22). The Maintenance of the List of QPS Microorganisms Intentionally Added to Food or Feed-Scientific Opinion of the Panel on Biological Hazards 2008. Available online: https://www.efsa.europa.eu/fr/efsajournal/pub/923.

Rabah, H., Rosa do Carmo, F., and Jan, G. (2017). Dairy propionibacteria: Versatile probiotics. Microorganisms, 5.

Huang, 2017, Spray drying of probiotics and other food-grade bacteria: A review, Trends Food Sci. Technol., 63, 1, 10.1016/j.tifs.2017.02.007

Gaucher, 2019, Benefits and drawbacks of osmotic adjustment in Propionibacterium freudenreichii, J. Proteom., 204, 103400, 10.1016/j.jprot.2019.103400

Huang, 2016, Hyperconcentrated sweet whey, a new culture medium that enhances Propionibacterium freudenreichii stress tolerance, Appl. Environ. Microbiol., 82, 4641, 10.1128/AEM.00748-16

Jan, 2000, Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp, shermanii. Lait, 80, 325, 10.1051/lait:2000128

Desmond, 2001, Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying, Int. Dairy J., 11, 801, 10.1016/S0958-6946(01)00121-2

Csonka, 1991, Prokaryotic Osmoregulation: Genetics and Physiology, Annu. Rev. Microbiol., 45, 569, 10.1146/annurev.mi.45.100191.003033

Boyaval, 1999, Stress and osmoprotection in propionibacteria, Lait, 79, 59, 10.1051/lait:199914

Lavari, 2012, Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion, Food Res. Int., 48, 748, 10.1016/j.foodres.2012.06.018

Malik, 1968, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol., 14, 1185, 10.1139/m68-199

Rogosa, 1960, A medium for the cultivation of lactobacilli, J. Appl. Bacteriol., 23, 130, 10.1111/j.1365-2672.1960.tb00188.x

Demirtas, 2003, Effect of aeration and agitation on growth rate of Thermus thermophilus in batch mode, J. Biosci. Bioeng., 95, 113, 10.1016/S1389-1723(03)80114-7

Arnaud, 1992, Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing: Lactobacillus casei subsp, casei. Biotechnol. Tech., 6, 265, 10.1007/BF02439356

Huang, 2016, Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria, J. Funct. Foods, 23, 453, 10.1016/j.jff.2016.02.050

Cousin, 2012, The first dairy product exclusively fermented by Propionibacterium freudenreichii: A new vector to study probiotic potentialities in vivo, Food Microbiol., 32, 135, 10.1016/j.fm.2012.05.003

Gagnaire, V., Jardin, J., Rabah, H., Briard-Bion, V., and Jan, G. (2015). Emmental cheese environment enhances Propionibacterium freudenreichii stress tolerance. PLoS ONE, 10.

Aburjaile, F.F., Rohmer, M., Parrinello, H., Maillard, M.-B., Beaucher, E., Henry, G., Nicolas, A., Madec, M.-N., Thierry, A., and Parayre, S. (2016). Adaptation of Propionibacterium freudenreichii to long-term survival under gradual nutritional shortage. BMC Genom., 17.

Kets, 1996, Effect of compatible solutes on survival of lactic acid bacteria subjected to drying, Appl. Environ. Microbiol., 62, 259, 10.1128/aem.62.1.259-261.1996

Cardoso, 2007, Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response, Microbiology, 153, 270, 10.1099/mic.0.29262-0

Dalmasso, 2012, Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold, Appl. Environ. Microbiol., 78, 6357, 10.1128/AEM.00561-12

Behrends, 2011, Differences in strategies to combat osmotic stress in Burkholderia cenocepacia elucidated by NMR-based metabolic profiling: B. cenocepacia osmotic stress tolerance, Lett. Appl. Microbiol., 52, 619, 10.1111/j.1472-765X.2011.03050.x

Pleitner, 2012, Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7, Biochim. Biophys. Acta (BBA)-Proteins Proteom., 1824, 1351, 10.1016/j.bbapap.2012.07.007

Vaidya, 2018, Distinct osmoadaptation strategies in the strict halophilic and halotolerant bacteria isolated from Lunsu salt water body of north west Himalayas, Curr. Microbiol., 75, 888, 10.1007/s00284-018-1462-8

Weinisch, 2019, Glycine betaine and ectoine are the major compatible solutes used by four different halophilic heterotrophic ciliates, Microb. Ecol., 77, 317, 10.1007/s00248-018-1230-0

Leverrier, 2004, Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii, Arch. Microbiol., 181, 215, 10.1007/s00203-003-0646-0

Flahaut, 1996, Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis, FEMS Microbiol. Lett., 138, 49, 10.1111/j.1574-6968.1996.tb08133.x

Streeter, 2006, Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules, Appl. Environ. Microbiol., 72, 4250, 10.1128/AEM.00256-06

Teixido, 2005, Accumulation of the compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2, Lett. Appl. Microbiol., 41, 248, 10.1111/j.1472-765X.2005.01757.x

Usall, 2008, Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying, J. Appl. Microbiol., 104, 767, 10.1111/j.1365-2672.2007.03590.x

Ferreira, 2005, Survival of Lactobacillus sakei during heating, drying and storage in the dried state when growth has occurred in the presence of sucrose or monosodium glutamate, Biotechnol. Lett., 27, 249, 10.1007/s10529-004-8351-x

Akashi, 1979, Effect of oxygen supply on l -lysine, l -threonine and l -isoleucine fermentations, Agric. Biol. Chem., 43, 2087

Ghazi, 1999, Thermoprotection by glycine betaine and choline, Microbiology, 145, 2543, 10.1099/00221287-145-9-2543

Holtmann, 2004, Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: Involvement of Opu transporters, J. Bacteriol., 186, 1683, 10.1128/JB.186.6.1683-1693.2004

Singer, 1998, Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose, Trends Biotechnol., 16, 460, 10.1016/S0167-7799(98)01251-7

Hottiger, 1987, Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae, J. Bacteriol., 169, 5518, 10.1128/jb.169.12.5518-5522.1987

Hazell, 1995, Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively, FEBS Lett., 377, 457, 10.1016/0014-5793(95)01392-X

Fitz, 1878, Ueber Spaltpilzgährungen, Ber. Dtsch. Chem. Ges., 11, 1890, 10.1002/cber.187801102180