Tail asymptotics for exponential functionals of Lévy processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asmussen, 1998, Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities, Ann. Appl. Probab., 8, 354, 10.1214/aoap/1028903531
Bertoin, 1996, Lévy processes, vol. 121
J. Bertoin, P. Biane, M. Yor, Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, in: Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress Probability, Birkhäuser, Basel, 2004, pp. 45–56.
Bertoin, 2002, On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes, Ann. Fac. Sci. Toulouse Math. (6), 11, 33, 10.5802/afst.1016
Bingham, 1987, Regular variation, vol. 27
J. Blanchet, P. Glynn, Approximations for the distribution of infinite horizon discounted rewards, Technical Report, Department of Management Science and Engineering, Stanford University, 2004.
Braverman, 2002, Tail probabilities of subadditive functionals of Lévy processes, Ann. Appl. Probab., 12, 69, 10.1214/aoap/1015961156
Breiman, 1965, On some limit theorems similar to the arc-sin law, Teor. Verojatnost. i Primenen., 10, 351
P. Carmona, F. Petit, M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in: Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, pp. 73–130.
Denisov, 2004, Tail asymptotics for the supremum of a random walk when the mean is not finite, Queueing Syst., 46, 15, 10.1023/B:QUES.0000021140.87161.9c
D. Dufresne, The distribution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J. (1–2) (1990) 39–79 ISSN 0346-1238.
Dumas, 2002, A Markovian analysis of additive-increase multiplicative-decrease algorithms, Adv. Appl. Probab., 34, 85, 10.1239/aap/1019160951
Embrechts, 1979, Subexponentiality and infinite divisibility, Z. Wahrsch. Verw. Gebiete, 49, 335, 10.1007/BF00535504
Embrechts, 1997, Modelling extremal events for insurance and finance, vol. 33
K.B. Erickson, R.A. Maller, Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals, in: Séminaire de Probabilités XXXVIII, Lecture Notes in Mathematics, vol. 1857, Springer, Berlin, 2005, pp. 70–94.
S. Foss, T. Konstantapoulos, S. Zachary, The principle of a single big jump: discrete and continuous time modulated random walks with heavy-tailed increments, 2005, preprint available as arXiv:math.PR/0509605 at http://arxiv.org/PS_cache/math/pdf/0509/0509605.pdf.
Foss, 2005, The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk, Ann. Appl. Probab., 15, 1936, 10.1214/105051605000000269
Goldie, 1991, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., 1, 126, 10.1214/aoap/1177005985
Guillemin, 2004, AIMD algorithms and exponential functionals, Ann. Appl. Probab., 14, 90, 10.1214/aoap/1075828048
Kesten, 1973, Random difference equations and renewal theory for products of random matrices, Acta Math., 131, 207, 10.1007/BF02392040
Klüppelberg, 2004, Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab., 14, 1766, 10.1214/105051604000000927
C. Klüppelberg, A. Lindner, R. Maller, Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, in: Y. Kabanov, R. Lipster, J. Stoyanov (Eds.), From stochastic calculus to mathematical finance. The Shiryaev Festschrift, Springer, to appear. Available at http://www-m4.ma.tum.de/m4/Papers/Klueppelberg/cog-spr.pdf.
D.G. Konstantinides, T. Mikosch, Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations, Ann. Probab. 33 (5) (2005) 1992–2035 ISSN 0091-1798.
Litvak, 2004, On the minimal travel time needed to collect n items on circle, Ann. Appl. Probab., 14, 881, 10.1214/105051604000000152
Rivero, 2003, A law of iterated logarithm for increasing self-similar Markov processes, Stochastic Stochastic Rep., 75, 443, 10.1080/10451120310001646014
Rivero, 2005, Recurrent extensions of self-similar Markov processes and Cramér's condition, Bernoulli, 11, 471, 10.3150/bj/1120591185
Rootzén, 1986, Extreme value theory for moving average processes, Ann. Probab., 14, 612, 10.1214/aop/1176992534
Veraverbeke, 1977, Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic Processes Appl., 5, 27, 10.1016/0304-4149(77)90047-3
Willekens, 1987, On the supremum of an infinitely divisible process, Stochastic Process. Appl., 26, 173, 10.1016/0304-4149(87)90058-5
M. Yor, Exponential functionals of Brownian motion and related processes, Springer Finance. Springer, Berlin, 2001. ISBN 3-540-65943-9. (With an introductory chapter by Hélyette Geman, Chapters 1, 3, 4, 8 translated from the French by Stephen S. Wilson).