Tacitation and implicitation: the construction of semiotic tools for representing mathematics teaching
Tóm tắt
Representations are an account of reality. Their construction involves several choices: what to represent, how to represent, from which point of view. Here, we introduce tools to represent mathematics teaching through the study of sign exchanges. We first emphasize how signs are tightly related to different shares of knowledge of sign users. In the regular case, sign exchanges are considered to rest on a kind of shared obviousness. The knowledge imbalance between actors of the didactical situation renders this shared obviousness minimal, and therefore requires distinguishing different kinds of sign exchange processes. From the notion of semiosis, we define the processes of tacitation and implicitation. We present a field study from these theoretical concepts and discuss some implications for future research.
Tài liệu tham khảo
Bach, K. (1994). Conversational impliciture. Mind and Language, 9, 124–162.
Baillé, J. (1981). La compréhension du langage: une approche différentielle et fonctionnelle. Revue Française de Pédagogie, 55, 13–18.
Brousseau, G. (1997). Theory of didactical situation in mathematics. Dordrecht: Kluwer Academic Publishers.
Carston, R. (2001). Relevance theory and the saying/implicating distinction. UCL Working Papers in Linguistics, 13, 1–35.
Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 127–149). Washington: American Psychological Association.
Clark, H. H., & Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science, 13, 259–294.
Delandshere, G., & Arens, S. A. (2001). Representations of teaching and standards-based reform: Are we closing the debate about teacher education? Teaching and Teacher Education, 17(5), 547–566.
Dépret, C., & Patonnier, S. (2009). Appréhender l’objet mathématique à travers ses désignations: enjeux et perspectives didactiques. In J. Baillé (Ed.), Du mot au concept: Objet (pp. 155–181). Grenoble: Presses Universitaires de Grenoble.
Desanti, J.-T. (1968). Les idéalités mathématiques. Paris: Éditions du Seuil.
Ducrot, O. (1972). Dire et ne pas dire (2nd ed.). Paris: Hermann.
Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational studies in mathematics, 61(12), 103–131.
Forget, A., & Schubauer-Leoni, M.-L. (2008). Inventer un code de désignation d’objets au début de la forme scolaire. Des productions personnelles à la convention collective. In L. Filliettaz & M.-L. Schubauer-Leoni (Eds.), Processus interactionnels et situations éducatives (pp. 183–205). Bruxelles: De Boeck, Coll. Raisons Educatives.
Grice, H. P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax and semantics (Vol. 3, pp. 41–58). New York: Academic Press.
Herbst, P., & Chazan, D. (2003). Exploring the practical rationality of mathematics teaching through conversations about videotaped episodes. FLM, 23(1), 2–14.
Herbst, P., & Chazan, D. (2006). Producing a viable story of geometry instruction: What kind of representation calls forth teachers’ practical rationality? In Proceedings of the annual meeting of the North American chapter of the international group for the psychology of mathematics education. Merida, Mexico.
Jacobs, J., & Morita, E. (2002). Japanese and American teachers evaluations of videotaped mathematics lessons. Journal for Research in Mathematics Education, 33(3), 154–175.
Kerbrat-Orecchioni, C. (1986). L’implicite (2nd ed.). Paris: Armand Colin.
Kerbrat-Orecchioni, C. (2009). La place de l’interprétation en Analyse du Discours en Interaction. http://www.revue-signes.info/document.php?id=821. Accessed 28 July 2009.
Klinkenberg, J.-M. (1993). Précis de sémiotique générale. Bruxelles: De Boeck.
Morris, C. (1938). Foundations of the theory of signs. In O. Neurath, R. Carnap, & C. Morris (Eds.), The international encyclopedia of unified science (Vol. 1, no. 2). Chicago: University of Chicago Press.
Ongstad, S. (2006). Mathematics and mathematics education as triadic communication? A semiotic framework exemplified. Educational Studies in Mathematics, 61, 247–277.
Peirce, C. S. (1931–1935). Collected papers. Cambridge: Harvard University Press.
Polanyi, M. (1962). Tacit knowing: Its bearing on some problems of philosophy. Reviews of Modern Physics, 34(4), 601–616.
Pourtois, J.-P., & Desmet, H. (2004). L’éducation implicite. Paris: Presses Universitaires de France.
Quine, W. V. O. (1960). Le mot et la chose. Paris: Flammarion.
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behaviour, 6, 855–863.
Sáenz-Ludlow, A. (2003). Classroom mathematics discourse as an evolving interpreting game. In M. Anderson, A. Sáenz-Ludlow, & V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 253–284). Ottawa: Legas Press.
Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology. Learning, Memory, and Cognition, 13(3), 501–518.
Schubauer-Leoni, M. L., & Perret-Clermont, A. N. (1997). Social interactions and mathematics learning. In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 265–283). London: Psychology Press.
Sensevy, G., Mercier, A., Schubauer-Leoni, M. L., Ligozat, F., & Perrot, G. (2005). An attempt to model the teacher’s action in mathematics. Educational Studies in mathematics, 59(1), 153–181.
Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Oxford: Blackwell.
Sperber, D., & Wilson, D. (2005). Pragmatics. In F. Jackson & M. Smith (Eds.), Oxford handbook of contemporary philosophy (pp. 468–501). Oxford: Oxford University Press.
Wang, E., Kashani, L., & Kim, Y. S. (2005). Teaching strategies ontology using SWRL rules. In C. K. Looi, D. Jonassen, & M. Ikeda (Eds.), Towards sustainable and scalable educational innovations informed by the learning sciences (pp. 532–539). Amsterdam: IOS Press.