TJ-M2010-5 Attenuates Severe Myocardial Ischemia/Reperfusion Injury in Heart Transplantation by Inhibiting MyD88 Homodimerization In Vivo

Journal of Cardiovascular Translational Research - Tập 15 - Trang 1366-1376 - 2022
Huifang Yang1,2,3,4, Ping Zhou1,2,3,4, Qingwen Li1,2,3,4, Xi Zhou1,2,3,4, Junbo Li1,2,3,4, Jin Wang1,2,3,4, Jingzeng Wang1,2,3,4, Yuanyuan Zhao1,2,3,4, Bo Yang1,2,3,4, Bo Zhang1,2,3,4, Chen Dai1,2,3,4, Zhimiao Zou1,2,3,4, Yang Yang1,2,3,4, Zhishui Chen1,2,3,4
1Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
3NHC Key Laboratory of Organ Transplantation, Wuhan, China
4Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China

Tóm tắt

Survival of transplanted hearts is often limited by cold ischemia time. Here, we assessed the effects of the small molecular compound TJ-M2010-5 on graft preservation. In a cardiac cold ischemia/reperfusion model, TJ-M2010-5 ameliorated myocardial ischemia/reperfusion injury (MIRI) in histidine-tryptophan-ketoglutarate (HTK) organ preservation solution. When applied in HTK solution and on donors/recipients respectively, TJ-M2010-5 exerted optimal effects when applied as an additive in the HTK solution. TJ-M2010-5-administered mice exhibited shorter rebeating time; higher beating score; stronger and more regular sinus heart rate; and amelioration of apoptosis, inflammatory reactions, and myocardial injury. Mechanistically, TJ-M2010-5 inhibited the expression of key molecules in the toll-like receptor (TLR) signaling pathway and affected downstream proteins by inhibiting myeloid differentiation factor 88 homodimerization, thereby decreasing myocardial injury. Thus, TJ-M2010-5 may exert protective effects against MIRI by blocking the TLR signaling pathway. Our findings may lead to novel approaches for organ preservation, thereby reducing organ abandonment and improving recipient prognosis. The role of the TLR signaling pathway in MIRI progress and operation procedure of the MIRI model in vivo are presented in a graphical abstract (Online Abstract Figure).

Tài liệu tham khảo

Ottani, F., Limbruno, U., Latini, R., Misuraca, L., & Galvani, M. (2018). Reperfusion in STEMI patients: Still a role for cardioprotection? Minerva Cardioangiologica, 66, 452–463. Boag, S. E., Andreano, E., & Spyridopoulos, I. (2017). Lymphocyte communication in myocardial ischemia/reperfusion injury. Antioxidants & Redox Signaling, 26, 660–675. Zhang, M., Zhu, J., Qin, X., Zhou, M., Zhang, X., Gao, Y., Zhang, T., Xiao, D., Cui, W., & Cai, X. (2019). Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. ACS Applied Materials & Interfaces, 11, 30631–30639. Timmers, L., Pasterkamp, G., de Hoog, V. C., Arslan, F., Appelman, Y. E. A., & de Kleijn, D. P. V. (2012). The innate immune response in reperfused myocardium. Cardiovascular Research, 94, 276–283. Akbarpour, M.,Lecuona, E., Chiu, S., Wu, Q., Querrey, M., Fernandez, R., Nunez-Santana, F. L., Sun, H., Ravi, S., Kurihara, C., Walter, J. M., Joshi, N., Ren, Z., Roberts, S. C., Hauser, A. R., Kreisel, D., Li, W., Chandel, N., Misharin, A. V., Mohanakumar, T., Budinger, G. R. S., and Bharat, A. (2020). Residual endotoxin induces primary graft dysfunction through ischemia-reperfusion-primed alveolar macrophages. Journal of Clinical Investigation, 130, 4456–4469. Banoth, B., & Cassel, S. L. (2018). Mitochondria in innate immune signaling. Translational research : the journal of laboratory and clinical medicine, 202, 52–68. Wang, Y., Abarbanell, A. M., Herrmann, J. L., Weil, B. R., Poynter, J., Manukyan, M. C., Crisostomo, P. R., & Meldrum, D. R. (2010). Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock, 34, 548–57. Uysal, A., Sahna, E., Ozguler, I. M., Burma, O., & Ilhan, N. (2015). Effects of apocynin, an NADPH oxidase inhibitor, on levels of ADMA, MPO, iNOS and TLR4 induced by myocardial ischemia reperfusion. Perfusion, 30, 472–477. Yuan, L., Dai, X., Fu, H., Sui, D., Lin, L., Yang, L., Zha, P., Wang, X., & Gong, G. (2018). Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-kappaB signaling pathway. European Journal of Pharmacology, 835, 132–139. Xing, S., Zhang, X., Huang, X., Xie, L., Jiang, F., & Zhou, P. (2019). Modulating the conformation of the TIR domain by a neoteric MyD88 inhibitor leads to the separation of GVHD from GVT. Leukemia & Lymphoma, 60, 1528–1539. Zhu, J., Mohan, C., & Lepper, P. M. (2010). Toll-like receptor signaling pathways-therapeutic opportunities. Mediators of inflammation, 2010, 781235–7. Akamatsu, Y., Haga, M., Tyagi, S., Yamashita, K., Graça Souza, A. V., Ollinger, R., Czismadia, E., May, G. A., Ifedigbo, E., Otterbein, L. E., Bach, F. H., & Soares, M. P. (2004). Heme oxygenase-1-derived carbon monoxide protects hearts from transplant-associated ischemia reperfusion injury. The FASEB Journal, 18, 771–772. Vilahur, G. and Badimon, L. (2014). Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor. Frontiers in Physiology, 5, 496. Futosi, K., Fodor, S., & Mocsai, A. (2013). Neutrophil cell surface receptors and their intracellular signal transduction pathways. International Immunopharmacology, 17, 638–50. Xiao, X., Yang, C., Qu, S. L., Shao, Y. D., Zhou, C. Y., Chao, R., Huang, L., & Zhang, C. (2020). S100 proteins in atherosclerosis. Clinica Chimica Acta; International Journal of Clinical Chemistry, 502, 293–304. Turk, T. R., Su, S., Rauen, U., Feldkamp, T., de Groot, H., Kribben, A., & Witzke, O. (2012). Reduction of chronic graft injury with a new HTK-based preservation solution in a murine heart transplantation model. Cryobiology, 64, 273–8. Zhang, L. M., Liu, J. H., Xue, C. B., Li, M. Q., Xing, S., Zhang, X., He, W. T., Jiang, F. C., Lu, X., & Zhou, P. (2016). Pharmacological inhibition of MyD88 homodimerization counteracts renal ischemia reperfusion-induced progressive renal injury in vivo and in vitro. Scientific Reports, 6, 26954. Arslan, F., de Kleijn, D. P., Timmers, L., Doevendans, P. A., & Pasterkamp, G. (2008). Bridging innate immunity and myocardial ischemia/reperfusion injury: The search for therapeutic targets. Current Pharmaceutical Design, 14, 1205–16. Gitlin, A. D., Heger, K., Schubert, A. F., Reja, R., Yan, D., Pham, V. C., Suto, E., Zhang, J., Kwon, Y. C., Freund, E. C., Kang, J., Pham, A., Caothien, R., Bacarro, N., Hinkle, T., Xu, M., McKenzie, B. S., Haley, B., Lee, W. P., … Dixit, V. M. (2020). Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature, 587, 275–280. Arslan, F., Smeets, M. B., O’Neill, L. A. J., Keogh, B., McGuirk, P., Timmers, L., Tersteeg, C., Hoefer, I. E., Doevendans, P. A., Pasterkamp, G., & de Kleijn, D. P. V. (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation (New York, N.Y.), 121, 80–90. Li, L., Wang, Y., Guo, R., Li, S., Ni, J., Gao, S., Gao, X., Mao, J., Zhu, Y., Wu, P., Wang, H., Kong, D., Zhang, H., Zhu, M., & Fan, G. (2020). Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. Journal of Controlled Release : Official Journal of the Controlled Release Society, 317, 259–272. Liu, J. H., He, L., Zou, Z. M., Ding, Z. C., Zhang, X., Wang, H., Zhou, P., Xie, L., Xing, S., & Yi, C. Z. (2018). A novel inhibitor of homodimerization targeting MyD88 ameliorates renal interstitial fibrosis by counteracting TGF-beta1-induced EMT in vivo and in vitro. Kidney and Blood Pressure Research, 43, 1677–1687. Zou, Z., Du, D., Miao, Y., Yang, Y., Xie, Y., Li, Z., Zhou, L., Zhang, L., Zhou, P., & Jiang, F. (2020). TJ-M2010–5, a novel MyD88 inhibitor, corrects R848-induced lupus-like immune disorders of B cells in vitro. International Immunopharmacol, 85, 106648. Zhang, X., Xing, S., Li, M., Zhang, L., Xie, L., He, W., Liu, J., Chang, S., Jiang, F., & Zhou, P. (2016). Beyond knockout: A novel homodimerization-targeting MyD88 inhibitor prevents and cures type 1 diabetes in NOD mice. Metabolism, 65, 1267–1277. Xie, L., Jiang, F. C. , Zhang, L. M., He, W. T., Liu, J. H., Li, M. Q, Zhang, X., Xing, S., Guo, H., and Zhou, P. (2016). Targeting of MyD88 homodimerization by novel synthetic inhibitor TJ-M2010–5 in preventing colitis-associated colorectal cancer. Journal of the National Cancer Institute, 108, 1–12. Moskowitzova, K., Shin, B., Liu, K., Ramirez-Barbieri, G., Guariento, A., Blitzer, D., Thedsanamoorthy, J. K., Yao, R., Snay, E. R., Inkster, J., Orfany, A., Zurakowski, D., Cowan, D. B., Packard, A. B., Visner, G. A., Del, N. P., & McCully, J. D. (2019). Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 38, 92–99. Ding, Z., Du, D., Yang, Y., Yang, M., Miao, Y., Zou, Z., Zhang, X., Li, Z., Zhang, X., Zhang, L., Wang, X., Zhao, Y., Jiang, J., Jiang, F., & Zhou, P. (2019). Short-term use of MyD88 inhibitor TJ-M2010-5 prevents d-galactosamine/lipopolysaccharide-induced acute liver injury in mice. International Immunopharmacology, 67, 356–365. Aoyagi, T., Kusakari, Y., Xiao, C. Y., Inouye, B. T., Takahashi, M., Scherrer-Crosbie, M., Rosenzweig, A., Hara, K., & Matsui, T. (2012). Cardiac mTOR protects the heart against ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 303, H75-85. Niu, S., Xu, L., Yuan, Y., Yang, S., Ning, H., Qin, X., Xin, P., Yuan, D., Jiao, J., & Zhao, Y. (2020). Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochemical and Biophysical Research Communications, 530, 54–59. Banner, N. R., Thomas, H. L., Curnow, E., Hussey, J. C., Rogers, C. A., & Bonser, R. S. (2008). The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation, 86, 542–547. Cleveland, J. J., Meldrum, D. R., Rowland, R. T., Banerjee, A., & Harken, A. H. (1997). Preconditioning and hypothermic cardioplegia protect human heart equally against ischemia. The Annals of Thoracic Surgery, 63, 147–52. Engelman, D. T., Chen, C. Z., Watanabe, M., Engelman, R. M., Rousou, J. A., Flack, J. R., Deaton, D. W., Maulik, N., & Das, D. K. (1995). Improved 4- and 6-hour myocardial preservation by hypoxic preconditioning. Circulation, 92, II417-22. Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., Zheng, Y., Riquelme, J. A., Kearney, J., Sharma, V., Multhoff, G., Hall, A. R., & Davidson, S. M. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65, 1525–36.