THz/sub-THz bolometer based on electron heating in a semiconductor waveguide
Tóm tắt
Direct detection THz/sub-THz bolometer is proposed. In it an electromagnetic wave propagates in the bipolar semiconductor waveguide, heats electrons and holes there, and therefore creates their bipolar thermodiffusion flow and, as well as, the electromotive force (emf). The flow causes the carrier excess concentration. Both this concentration and emf are used to get the bolometer response voltage. The bolometer theoretical model is developed. The possibility without cooling or moderate cooling (about 100 K for the Cd0.2Hg0.8Te bolometers) to get acceptable for applications values of the noise equivalent power is shown. Experimental results confirm the main model conclusions.
Tài liệu tham khảo
P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002).
J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nat. Nanotechnol. 3, 496–500 (2008).
M. Shur, “Terahertz technology: devices and applications”, Proc. ESSDERC’05, Grenoble, 13–22 (2005).
M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor”, Brit. J. Appl. Phys. 14, 672–676 (1963).
J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004).
Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer”, Jap. J. Appl. Phys. 9, 125–131 (1970).
Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors”, Semiconductors 42, 1234–1236 (2008).
S. Asmontas, Electrogradient Phenomena in Semiconductors, Mokslas, Vilnius, 1984. (in Russian)
V.N. Dobrovolsky and F.F. Sizov, “Room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer”, Semicond. Sci. Tech. 22, 103–106 (2007).
A.A. Barybin, Waves in Thin-Film Semiconductor Structures with Hot Electrons, Nauka, Moscow, 1986. (in Russian)
L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, London, 1960.
A. Rogalski, Infrared Detectors, Gordon and Breach, Amsterdam, 2000.
K. Seeger, Semiconductor Physics, Springer, Wien, 1973.
A.V. Ljubchenko, E.A. Salkov, and F.F. Sizov, Physical Basis of Semiconductor Infrared Photoelectronics, Naukova Dumka, Kiev, 1984. (in Russian)
F. Sizov, V. Dobrovolsky, Yu. Kamenev, A. Smirnov, and V. Zabudsky, “Narrow-gap semiconductor as the all-ware detector from near IR to mm wave regions”, IRMMW-THz 2008 Terahertz for Life, September 15–19, Pasadena, California, 1221 (2008).
E.N. Grossman and A.J. Miller, “Active millimeter-wave imaging for concealed weapons detection”, Proc. SPIE 5077, 62–70 (2003).
A. Van der Ziel, Fluctuation Phenomena in Semiconductors, Butterworths Scientific Publications, London, 1959.
R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, R. Rumyantsev, and M.S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006).
F.J. Gonza’lez and G.D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas”, Infrared Phys. Techn. 46, 418–428 (2005).