THE ENGINEERING FATIGUE PROPERTIES OF WROUGHT COPPER*<sup>†</sup>

Fatigue and Fracture of Engineering Materials and Structures - Tập 4 Số 3 - Trang 199-234 - 1981
M. C. Murphy1
1NEI Parsons Ltd., Newcastle upon Tyne, England

Tóm tắt

Abstract—The paper presents a comprehensive review, supplemented by original data, of the engineering fatigue behaviour of copper. Variations in manufacturing route and softening treatments are shown to have little effect on the fatigue of annealed copper but the high cycle fatigue strength is increased by cold work. The high strain fatigue behaviour is defined in terms of the plastic strain range and the cyclic stress‐strain characteristics are documented. Fatigue behaviour in bending and torsion is defined by data and related to that in tension by simple design rules.Notches are found to reduce the laboratory measured fatigue strength of copper by ∼ 30% and the effect of surface finish, surface distortion and surface residual stress is defined in the literature. Fatigue crack growth is defined in terms of stress intensity factor range ΔKby an upperbound law and, together with the conditions for non‐growth (ΔK0), shown to relate to the equivalent conditions for steels via the ratio of the respective elastic moduli.The effect of environment on the fatigue of copper has received scant attention in the literature, such results as exist suggesting little if any reduction in strength to be brought about by gaseous or aqueous environments. The most dramatic change is the improvement of about an order of magnitude which results when tests in vacuum are compared with equivalent tests in air. Results of fatigue tests on copper in ammoniacal environments are conspicuously absent from the literature.As the test temperature is reduced below room temperature there is a predictable increase in high cycle fatigue strength, a reduction in fatigue strength occurring above room temperature. High strain fatigue test results presented in terms of plastic strain range appear insensitive to temperature although at very low strain rates and high temperatures a reduction in fatigue strength occurs. A linear life fraction cumulative damage creep‐fatigue law appears sometimes to be non‐conservative but much more testing is needed to evaluate fatigue damage summation laws generally for copper.Numerical data are given in support of all the aspects of the engineering fatigue behaviour reviewed in the paper.

Từ khóa


Tài liệu tham khảo

Wöhler A., 1866, Results concerning the relative strengths of iron, steel and copper, Z. Bauw., 16, 67

Grosskreutz J. C., 1971, Fatigue mechanisms in the sub‐creep range., ASTM STP, 495, 5

10.1002/pssb.2220470102

10.1007/BF00550441

Pook L. P., 1973, A fatigue crack growth theory., Int. J. Fracture., 9, 53, 10.1007/BF00035955

10.1179/msc.1977.11.2.68

10.1016/0001-6160(78)90028-7

McAdam D. J., 1925, Effect of cold working on endurance and other properties of metals, Part 1., Trans. Am. Soc. Steel Treat., 8, 782

McAdam D. J., 1927, Corrosion‐fatigue of non‐ferrous metals., Proc. Am. Soc. Test. Mater., 27, 102

Irwin P. L., 1926, Fatigue of metals by direct stress., Proc. Am. Soc. Test. Mater., 26, 218

Gough H. J., 1924, The Fatigue of Metals. Scott, 64

Gough H. J., 1932, Atmospheric action as a factor in fatigue of metals, J.I.M., 49, 93

Gough H. J., 1935, Some further experiments on atmospheric action in fatigue., J.I.M., 56, 55

Gough H. J., 1940, Inert atmospheres as fatigue environments., J.I.M., 72, 415

Ludwick P., 1930, Fatigue strength and flow resistance, Z. Metallk., 22, 374

Luttke G., 1931, Notch and corrosion fatigue strength, Metallwirtschaft, 37, 705

Rolle S., 1933, Oxygen‐free high‐conductivity copper: its properties and uses., Min. Metall., N.Y., 14, 340

Schwinning W., 1935, Investigation of the fatigue strength of cold drawn wires of copper and pure aluminium, Z. Metallk., 27, 33

Greenall C. H., 1937, Fatigue properties of non‐ferrous sheet metals., Proc. Am. Soc. Test. Mater., 37, 160

Cook M., 1938, Copper and copper alloys for locomotive firebox construction., J. Instn Loco. Engrs, 28, 609

Goetzel C. G., 1940, Fatigue of porous metals., Proc. Am. Soc. Test. Mater., 40, 746

Anderson A. R., 1946, Fatigue tests on some additional copper alloys., Proc. Am. Soc. Test. Mater., 46, 678

10.1016/0022-5096(59)90018-3

Freudenthal A. M., 1953, On the statistical interpretation of fatigue tests., Proc. R. Soc., 216, 308

Grover H. J., 1956, Fatigue of Metals and Structures

Davies R. B. Mann J. Y.andKemsley D. S.(1956)Hardness changes during fatigue tests on copper.Proc. Int. Conf. Fatigue of Metals.ASME I Mech. E..

Kemsley D. S., 1956, Crack paths in fatigued copper, J.I.M., 85, 420

Kemsley D. S., 1958, The behaviour of cold‐worked copper in fatigue, J.I.M., 87, 10

Siede A., 1959, The fatigue hardening of copper., Trans, metall. Soc. A.I.M.E., 215, 947

Porter J., 1960, The fatigue curves of copper, J.I.M, 89, 86

Benham P. P., 1961, Axial‐load and strain cycling fatigue of copper at low endurance., J.I.M., 89, 328

Burmeister R. A., 1962, The effect of electrodeposited metals on fatigue life., Proc. Am. Soc. Test. Mater., 62, 675

Wright M. A., 1964, The effect of high temperature intermediate annealing on the fatigue life of copper, J.I.M., 93, 309

10.1002/pssb.19670210233

Holt D. L., 1967, Fatigue fracture in copper and the Cu‐8Wt Pet Al alloy at low temperature., Trans Metall. Soc A.I.M.E., 239, 264

10.1016/0001-6160(71)90012-5

Anon., 1968, Bending fatigue strength, Pro. Metall., 21, 79

Laird C., 1968, On the temperature effect in the fatigue fracture of copper and Cu‐7‐9 wt pet Al alloy., Trans metall. Soc. A.I.M.E., 242, 2339

Jones W. J., 1969, Analysis of the fatigue behaviour of machine finished annealed OFHC copper and mild steel., Metallurgia, 80, 47

Taubenblat P. W.(1973)Fatigue of copper.Amax Base Metals Research & Development Inc. Private communication.

10.1520/JTE10108J

10.1520/JTE10067J

10.1007/BF02661356

10.1007/BF02642311

10.2320/matertrans1960.18.144

Ohlson N. G., 1978, On crack propagation in copper, subjected to thermal fatigue., Scand. J. metall., 7, 102

10.1179/msc.1978.12.12.571

Beveridge A. A.andPook L. P.(1972)The effect of frequency on the fatigue strength of pure copper at elevated temperatures. NEL Report No. 501.

Wiese W., 1972, A new recrystallization diagram for copper, Erzmetall, 25, 404

10.1016/0001-6160(53)90022-4

Nine H. D., 1967, On improvement of fatigue life by dispersal of cyclic strain., J.I.M., 95, 252

Kenyon J. N., 1950, The reverting of hard‐drawn copper to soft condition under variable stress., Proc. Am. Soc. Test. Mater., 50, 1073

OFHC brand copper. Amax Copper Inc.(1961).

Opie W. R., 1970, A fundamental comparison of the mechanical behaviour of oxygen‐free and tough‐pitch coppers., J.I.M., 98, 245

10.1007/BF02673674

Gerber H., 1874, Determination of the permissible stresses in iron constructions., Z. Bay. Archtek. Ing. Vereins, 6, 101

Goodman J., 1899, Mechanics Applied to Engineering

McAdam D. J., 1925, Endurance properties of alloys of nickel and of copper, Trans. Am. Soc. Steel Treat., 7, 54

McAdam D. J., 1929, Fatigue and corrosion‐fatigue of spring material., Trans. Am. Soc. mech. Engrs, 51, 45, 10.1115/1.4059013

Rolle S., 1940, Some oxygen‐free coppers: annealing and drawing characteristics, Metals Alloys, 11, 82

Burghoff H. L., 1947, Fatigue characteristics of some copper alloys., Proc. Am. Soc. Test. Mater., 47, 695

Burghoff H. L., 1948, Fatigue properties of some coppers and copper alloys in strip form., Proc. Am. Soc. Test. Mater., 48, 709

Butts A.(1954)Copper: the Metal its Alloys and Compounds.Reinhold. pp.367–378 565–566.

10.1016/0022-5096(59)90028-6

10.1016/0020-7403(65)90081-0

Miller G. A., 1966, Fatigue‐crack growth in some copper base alloys., Trans, metall. Soc. A.I.M.E., 236, 1667

Laird C., 1967, The Coffin‐Manson law in relation to slip character., Trans. metall. Soc. A.I.M.E., 239, 1074

10.1299/jsme1958.15.889

Bamford T. G., 1925, Comparative tests on some varieties of commercial copper rod., J.I.M., 33, 167

10.1080/14786435608238175

Benham P. P., 1962, Torsional strain‐cycling fatigue of copper at low endurance, J.I.M., 91, 404

Murphy S., 1972, The recrystallization of touch pitch copper., J.I.M., 100, 225

Moore H. F., 1931, Fatigue tests in shear of three non‐ferrous metals., Proc. Am. Soc. Test. Mater., 31, 236

Anderson A. R., 1941, Fatigue tests on some copper alloys., Proc. Am. Soc. Test. Mater., 41, 849

Schwinning W., 1930, Investigations into the strength of uninsulated wires of electrolytic copper, bronze and aluminium under overload and alternating stress, HausZ. V.A.W., 2, 99

Goetzel C., 1939, Some properties of oxygen‐free high conductivity copper (OFHC)., Trans. Am. Soc. Metals, 21, 458

Coffin L. F., 1959, The cyclic straining and fatigue of metals., Trans. metall. Soc. A.I.M.E., 215, 794

10.1115/1.3625225

Coffin L. F., 1959, Internal Stresses and Fatigue in Metals, 363

10.1007/BF00713830

10.1016/0025-5416(73)90125-0

Coffin L. F., 1973, Fatigue at high temperature., ASTM STP, 520, 5

10.1080/14786435808237045

Grinberg N. M., 1972, Influence of vacuum on the various stages in the fatigue failure of copper, Physics. Metals Metallogr., 34, 129

Raouf Abdel H., 1974, Temperature and strain rate dependence of cyclic deformation response and damage accumulation in OFHC copper and 304 stainless steel., Met. Trans., 5, 267, 10.1007/BF02642951

Morrow J. D., 1964, Cyclic plastic strain energy and fatigue of metals., ASTM STP, 378, 45

10.1016/0001-6160(67)90137-X

10.1007/BF02661566

10.1243/03093247V062099

Nadai A., 1950, Theory of Flow and Fracture of Solids, 356

Gillett H. W., 1932, The resistance of copper and its alloys to repeated stress, Metals Alloys, 3, 200

Wood W. A., 1962, Metal fatigue in torsion at large and intermediate amplitudes, J.I.M., 91, 225

Packer M. E., 1964, Comparison of fatigue in annealed and cold‐worked copper., J. Aust. Inst. Metals, 9, 175

10.1111/j.1460-2695.1979.tb00380.x

10.1016/0020-7403(78)90082-6

10.1243/JMES_JOUR_1962_004_006_02

Frost N. E., 1965, Proc. First Int. Conf. on Fracture, 1433

Pook L. P.(1971)Fatigue crack growth data for various materials deduced from the fatigue lives of pre‐cracked plates.NEL Report No. 484.

10.1016/0013-7944(71)90003-8

10.1243/03093247V104242

10.1007/BF02811626

10.1007/BF02644496

10.1007/BF02661374

10.1016/0013-7944(74)90031-9

10.1038/2111077a0

Elsender A.(1979)Fatigue crack growth rates for steel. Private communication.

10.1179/030716980803286469

10.1088/0950-7671/36/6/310

Wadsworth N. J., 1959, Internal Stresses and Fatigue in Metals, 382

Schwinning W., 1934, Investigation of the behaviour of fractured aluminium and copper uninsulated wires under fatigue loading, Z. Metallk., 26, 162

Williams H. D.andNeate G. J.(1979)The application of fracture mechanics within the CEGB. Royal Society Meeting on ‘Living with Defects’.

Beevers C.J.(1977)Fatigue crack growth characteristics at low stress intensities of metals and alloys.Fatigue 1977.Metals Society Conference Cambridge pp.55–60.

Speidel M. O.(1976)Intercrystalline corrosion fatigue in steel “Bruchuntersuchung und Schadenklärung”. Allianz Versicherung Ag München. pp.83–87(in German).

10.1098/rspa.1957.0169

Wiese W., 1972, Tensile strength investigations on copper at elevated temperatures, Erzmetal, 25, 511

Friedmann W., 1935, Fatigue strength of copper and aluminium wires. Z, Ver. dt. Ing., 79, 1046

Allen N. P.andForrest P. G.(1956)The influence of temperature on the fatigue of metals. Proc. Int. Conf. Fatigue of Metals I. Mech. E ASME.pp.327–340.

10.1179/030634571790439423

Cocks G. J., 1975, The low‐cycle fatigue behaviour of OFHC copper and a copper dispersion alloy at elevated temperatures., J. Aust. Inst. Metals, 20, 210

Waterloo University/INCRA.The cyclic response of copper alloys at 100 to 500‐C. Private communication.

Miner M. A., 1945, Cumulative damage in fatigue., J. appl. Mech. Trans. Am. Soc. mech. Engrs, 67, A159, 10.1115/1.4009458

Dowling N. E., 1972, Fatigue failure predictions for complicated stress strain histories., JMLSA, 7, 71

Watson P., 1976, Cycle counting and fatigue damage, J. Soc. Env. Engrs, 15, 3

10.1179/cmq.1979.18.2.197