TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms

Cytogenetic and Genome Research - Tập 146 Số 3 - Trang 171-180 - 2015
Duo Li1, Bin Guo2, Jing Wang1, Lina Tan1, Qianjin Lu1
1Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, and Departments of
2Anesthesiology, and

Tóm tắt

DNA methylation plays an important role in the epigenetic regulation of mammalian gene expression. TET (ten-eleven translocation) proteins, newly discovered demethylases, have sparked great interest since their discovery. TET proteins catalyze 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in 3 consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxidation reactions. TET proteins dynamically regulate global or locus-specific 5-methylcytosine and/or 5-hydroxymethylcytosine levels by facilitating active DNA demethylation. In fact, in addition to their role as methylcytosine dioxygenases, TET proteins are closely related to histone modification, interact with metabolic enzymes as well as other proteins, and cooperate in transcriptional regulation. In this review, we summarize the recent progress in this exciting field, highlighting the molecular mechanism by which TET enzymes regulate gene expression and their functions in health and disease. We also discuss the therapeutic potential of targeting TET proteins and aberrant DNA modifications.

Từ khóa


Tài liệu tham khảo

10.1182/blood-2009-03-210039

10.1371/journal.pone.0045031

10.3324/haematol.2013.088740

10.1038/nature12362

10.1016/j.mad.2013.08.005

10.3233/RNN-2012-110223

10.1038/nature11742

10.1016/j.conb.2012.07.001

10.1038/nature11925

10.1016/j.devcel.2014.03.003

10.1056/NEJMoa0810069

10.1038/emboj.2012.357

10.1016/j.bbrc.2013.09.010

10.1038/nature11333

10.1107/S2052252514020922

10.1038/tp.2012.86

10.1016/j.ccr.2010.11.015

10.1074/jbc.M111.315804

10.1073/pnas.1317397110

10.1038/nature10656

10.1016/j.neuropharm.2013.07.036

10.1038/nature10443

10.1016/j.celrep.2013.01.011

10.1038/nature12905

10.1126/science.1210944

10.1016/j.cell.2013.11.020

10.1016/j.immuni.2015.03.005

10.1038/nature09303

10.1126/science.1210597

10.1186/gb-2013-14-8-r83

10.1182/blood-2009-02-205690

10.1093/nar/gkr120

10.1089/rej.2012.1324

10.1074/jbc.M114.554311

10.1038/nature12052

10.1038/nature12750

10.1182/blood-2009-04-215814

10.1007/s10577-012-9317-9

10.1111/j.1349-7006.2012.02213.x

10.1038/ng.391

10.1182/blood-2012-02-408542

10.1007/s12035-014-8734-5

10.1371/journal.pone.0063689

10.1182/blood-2010-12-325241

10.1016/j.cell.2012.07.033

10.1371/journal.pone.0062755

10.1161/CIRCULATIONAHA.113.002887

10.1007/s11060-012-0914-4

10.1038/nature06008

10.1074/jbc.C113.464800

10.1016/j.ccr.2011.06.001

10.1038/nature11093

10.1186/gb-2013-14-8-r91

10.1016/j.celrep.2015.01.008

10.1242/dev.099622

10.1371/journal.pone.0041036

10.1038/nature10102

10.1161/CIRCULATIONAHA.113.006092

10.1111/exd.12375

10.1016/j.ccr.2011.06.003

10.1186/gb-2012-13-8-r69

10.1039/c0cs00203h

10.1016/j.neuron.2013.08.003

10.1016/j.cell.2013.04.002

10.1158/2159-8290.CD-13-0696

10.1016/j.cell.2013.04.001

10.1016/j.stem.2013.06.003

10.1186/gb-2011-12-6-r54

10.2174/138920212803759730

10.1016/j.molcel.2014.12.035

10.1126/science.1170116

10.1158/0008-5472.CAN-06-3123

10.1016/j.molcel.2012.12.019

10.1038/ncb2748

10.1038/embor.2011.233

10.1038/ncomms1240

10.4161/cc.10.15.16930

10.1101/gad.2036011

10.1007/s11033-012-2305-5

10.1016/j.molcel.2011.04.005

10.1038/cr.2013.22

10.1038/nature12805

10.1038/onc.2012.67

10.1166/jbn.2013.1713

10.1021/ja4028346

10.1016/j.bbrc.2013.06.082

10.1074/jbc.M111.284885