TACO: a toolkit for AMPL control optimization

Mathematical Programming Computation - Tập 5 - Trang 227-265 - 2013
Christian Kirches1, Sven Leyffer2
1Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, USA

Tóm tắt

We describe a set of extensions to the AMPL modeling language to conveniently model mixed-integer optimal control problems for ODE or DAE dynamic processes. These extensions are realized as AMPL user functions and suffixes and do not require intrusive changes to the AMPL language standard or implementation itself. We describe and provide TACO, a Toolkit for AMPL Control Optimization that reads AMPL stub.nl files and detects the structure of the optimal control problem. This toolkit is designed to facilitate the coupling of existing optimal control software packages to AMPL. We discuss requirements, capabilities, and the current implementation. Using the example of the multiple shooting code for optimal control MUSCOD-II, a direct and simultaneous method for DAE-constrained optimal control, we demonstrate how the problem information provided by the TACO toolkit is interfaced to the solver. In addition, we show how the MS-MINTOC algorithm for mixed-integer optimal control can be used to efficiently solve mixed-integer optimal control problems modeled in AMPL. We use the AMPL extensions to model three control problem examples and we discuss how those extensions affect the representation of optimal control problems. Solutions to these problems are obtained by using MUSCOD-II and MS-MINTOC inside the AMPL environment. A collection of further AMPL control models is provided on the web site http://mintoc.de . MUSCOD-II and MS-MINTOC have been made available on the NEOS Server for Optimization, using the TACO toolkit to enable input of AMPL models.

Tài liệu tham khảo

Abhishek, K., Leyffer, S., Linderoth, T.: FilMINT: an outer approximation-based solver for mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010). http://joc.journal.informs.org/content/22/4/555.abstract Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. Ser. A 114, 69–99 (2008). http://www.mathematik.uni-wuerzburg.de/~kanzow/paper/VanishCP.pdf Åkesson, J., Årzén, K., Gräfvert, M., Bergdahl, T., Tummescheit. H.: Modeling and optimization with Optimica and JModelica.org–languages and tools for solving large-scale dynamic optimization problems. Comput. Chem. Eng. 34(11), 1737–1749 (2008). http://www.sciencedirect.com/science/article/pii/S009813540900283X Albersmeyer, J.: Adjoint based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/11651 Andreani, R., Birgin, E., Martinez, J., Schuverdt, M.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007). http://www.optimization-online.org/DB_FILE/2005/03/1085.pdf Andreani, R., Birgin, E., Martinez, J., Schuverdt, M.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math Program 111, 5–32 (2008). http://www.ime.usp.br/~egbirgin/publications/abms.pdf Barton, P., Pantelides, C.: gPROMS—a combined discrete/continuous modelling environment for chemical processing systems. Simul. Ser. 25, 25–34 (1993) Bauer, I., Bock, H., Körkel, S., Schlöder, J.: Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In: Scientific Computing in Chemical Engineering II, pp 282–289. Springer, Berlin (1999). http://hgs.iwr.uni-heidelberg.de/expdesign/people/skoerkel/publications/?name=scce99-bauer.ps.gz&type=application/postscript Belotti, P.: Couenne: a user’s manual. Tech. rep., Lehigh University (2009). http://www.coin-or.org/Couenne/couenne-user-manual.pdf Betts, J., Eldersveld, S., Huffman, W.: Sparse nonlinear programming test problems (Release 1.0). Tech. rep. BCSTECH-93-074, Boeing Computer Services (1993) Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp 242–247. Pergamon Press, Budapest (1984). http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim 5(2), 186–204 (2008). http://www.sciencedirect.com/science/article/pii/S1572528607000448 Box, G., Hunter, W., MacGregor, J., Erjavec, J.: Some problems associated with the analysis of multiresponse data. Technometrics 15, 33–51 (1973). http://www.jstor.org/stable/1266823 Bryson, A., Ho, Y.: Applied optimal control: optimization, estimation, and control. Wiley, Hoboken (1975) Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999) Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89, 149–185 (2000). http://www.ece.northwestern.edu/~nocedal/PSfiles/nitro.ps.gz Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-scale nonlinear optimization, pp 35–59. Springer, Berlin (2006). http://www.ziena.com/papers/integratedpackage.pdf Cesari, L.: Optimization—theory and applications. Springer, Berlin (1983) Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer, Heidelberg (1992) Cuthrell, J., Biegler, L.: On the optimization of differential-algebraic process systems. AIChE 33, 1257–1270 (1987). http://onlinelibrary.wiley.com/doi/10.1002/aic.690330804/abstract Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2001). http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2001/1659/ Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR Preprint 2001–25, Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany (2001). http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/muscod_manual.pdf Diehl, M., Bock, H., Kostina, E.: An approximation technique for robust nonlinear optimization. Math. Program. 107, 213–230 (2006). https://lirias.kuleuven.be/bitstream/123456789/70656/1/06-226.pdf Dolan, E., Moré, J., Munson, T.: Benchmarking Optimization Software with COPS 3.0. Tech. rep. ANL/MCS-TM-273, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA (2004). http://www.mcs.anl.gov/~more/cops/cops3.pdf Elmqvist, H., Brück, D.: Dymola–dynamic modeling language. User’s manual, Dynasim AB (2001) Fletcher, R., Leyffer, S.: User manual for filterSQP. Tech. rep., University of Dundee (1999). http://www.mcs.anl.gov/~leyffer/papers/SQP_manual.pdf Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis, J., Meyer, C., Schweiger, C.: Handbook of Test Problems for Local and Global Optimization. Kluwer, Dordrecht (1999) Fourer, B., Ferris, M.C., Gay, D.M.: Expressing complementarity problems and communicating them to solvers. SIAM J. Optim. 9, 991–1009 (1999). http://ftp2.cs.wisc.edu/math-prog/tech-reports/98-02.pdf Fourer, R., Gay, D., Kernighan, B.: A modeling language for mathematical programming. Manage. Sci. 36, 519–554 (1990). http://www.jstor.org/pss/2632268 Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Programming, 2nd edn. Books/Cole-Thomson Learning (2003) Gay, D.M.: Hooking your solver to AMPL. Tech. rep., Bell Laboratories, Murray Hill, NJ (1993; revised 1994, 1997). http://www.ampl.com/REFS/download.html#pdf Gill, P., Murray, W., Saunders, M., Wright, M.: User’s guide for NPSOL Version 5.0: a Fortran package for nonlinear programming. Report SOL 86–1, Dept. of Mathematics, University of California, San Diego (1998) http://cam.ucsd.edu/~peg/papers/npdoc.pdf Gill, P., Murray, W., Saunders, M.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002). http://www.stanford.edu/group/SOL/papers/SNOPT-SIGEST.pdf Gropp, W., Moré, J.: Optimization environments and the NEOS Server. In: Buhmann M, Iserles A (eds.) Approximation theory and optimization, pp 167–182. Cambridge University Press, Cambridge (1997). ftp://ftp.mcs.anl.gov/pub/tech_reports/reports/P654.ps.Z Hatz, K.: Estimating parameters in optimal control problems. Ruprecht-Karls-Universität Heidelberg, Diploma thesis (2008) Kameswaran, S., Biegler, L.: Advantages of nonlinear-programming-based methodologies for inequality path-constrained optimal control problems - a numerical study. SIAM J. Sci. Comput. 30, 957–981 (2008). http://numero.cheme.cmu.edu/uploads/paper12.pdf Kirches, C.: Fast numerical methods for mixed-integer nonlinear model-predictive control. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/11636/ Kočvara, M., Stingl, M.: PENNON–a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003). http://web.mat.bham.ac.uk/kocvara/pennon/paper_OMS.pdf Kočvara, M., Stingl, M.: PENNON User’s Guide (Version 0.9). PENOPT (2008). http://www.penopt.com/doc/pennon0_9.pdf. Kühl, P., Milewska. A., Diehl, M., Molga, E., Bock, H.: NMPC for runaway-safe fed-batch reactors. In: Proc. Int. Workshop on Assessment and Future Directions of NMPC, pp. 467–474 (2005). http://www.kuleuven.be/optec/OLD/research/subgroups/fastMPC/publications/Kuehl2005.pdf Leineweber, D.: Analyse und Restrukturierung eines Verfahrens zur direkten Lösung von Optimal-Steuerungsproblemen. Ruprecht-Karls-Universität Heidelberg, Diploma thesis (1995) Leineweber, D.: Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf (1999) Leineweber, D., Bauer, I., Schäfer, A., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Comput. Chem. Eng. 27, 157–174 (2003). http://www.iwr.uni-heidelberg.de/groups/agbock/USER_PAGES/LEINEWEBER_DANIEL/WWW/mc2_part1.pdf, http://www.iwr.uni-heidelberg.de/groups/agbock/USER_PAGES/LEINEWEBER_DANIEL/WWW/mc2_part2.pdf Leyffer, S.: User manual for MINLP. University of Dundee (1998) Logsdon, J., Biegler, L.: Decomposition strategies for large-scale dynamic optimization problems. Chem. Eng. Sci. 47(4), 851–864 (1992). http://www.sciencedirect.com/science/article/pii/000925099280272E Maria, G.: An adaptive strategy for solving kinetic model concomitant estimation-reduction problems. Can. J. Chem. Eng. 67, 825 (1989). http://onlinelibrary.wiley.com/doi/10.1002/cjce.5450670514/abstract Mattsson, S., Elmqvist, H., Broenink, J.: Modelica: an international effort to design the next generation modelling language. J. A Benelux Q. J. Autom. Control 38(3), 16–19 (1997), special issue on Computer Aided Control System Design, CACSD (1998). https://www.modelica.org/publications/papers/CACSD97Modelica.pdf Milewska, A.: Modelling of batch and semibatch chemical reactors—safety aspects. PhD thesis, Warsaw University of Technology (2006) Moessner-Beigel, M.: Optimale Steuerung für Industrieroboter unter Berücksichtigung der getriebebedingten Elastizität. Diploma thesis Ruprecht-Karls-Universität Heidelberg (1995) Murtagh, B., Saunders, M.: MINOS 5.4 user’s guide. Report SOL 83–20R, Department of Operations Research, Stanford University (1993) Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006) Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng. 30, 1553–1559 (2006). http://www.sciencedirect.com/science/article/pii/S0098135406001487 Plitt, K.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Diploma thesis Rheinische Friedrich-Wilhelms-Universität Bonn (1981) Potschka, A., Bock, H., Schlöder, J.: A minima tracking variant of semi-infinite programming for the treatment of path constraints within direct solution of optimal control problems. Optim. Methods Softw. 24(2), 237–252 (2009). http://www.tandfonline.com/doi/abs/10.1080/10556780902753098 Rothschild, B., Sharov, A., Kearsley, A., Bondarenko, A.: Estimating growth and mortality in stage-structured populations. J. Plankton Res. 19, 1913–1928 (1997). http://plankt.oxfordjournals.org/content/19/12/1913.full.pdf Rutquist, P., Edvall, M.: PROPT–Matlab Optimal Control Software. User’s manual, TOMLAB Optimization (2010). http://tomopt.com/docs/TOMLAB_PROPT.pdf Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg (2005). http://mathopt.uni-hd.de/PUBLICATIONS/Sager2005.pdf Sager, S.: A benchmark library of mixed-integer optimal control problems. In: Proceedings MINLP09 (2011). http://mathopt.uni-hd.de/PUBLICATIONS/Sager2011b.pdf Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. A (2011). doi:10.1007/s10107-010-0405-3. http://mathopt.uni-hd.de/PUBLICATIONS/Sager2011.pdf von Stryk, O.: User’s guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems. Tech. rep., Technische Universität München, Germany (1999) Tjoa, I.B., Biegler, L.: Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equations systems. Ind. Eng. Chem. Res. 30, 376–385 (1991). http://pubs.acs.org/doi/abs/10.1021/ie00050a015 Vanderbei, R., Shanno, D.: An interior point algorithm for nonconvex nonlinear programming. COAP 13, 231–252 (1999). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.4065&rep=rep1&type=pdf Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for Large-Scale Nonlinear Programming. Math. Program. 106(1), 25–57 (2006). http://www.springerlink.com/content/r31116mp70171220/