Sự kiệt sức của tế bào T trong nhiễm virus viêm gan B mãn tính: Kiến thức hiện tại và ý nghĩa lâm sàng
Tóm tắt
Nhiễm virus viêm gan B (HBV) là nguyên nhân chính gây ra bệnh viêm gan nhiễm trùng, trong đó việc hồi phục lâm sàng và liệu pháp kháng virus hiệu quả liên quan đến việc kiểm soát virus kéo dài của các tế bào T hiệu ứng. Ở người, nhiễm HBV mãn tính thường có dấu hiệu phản ứng yếu hoặc vắng mặt của tế bào T đặc hiệu với virus, điều này được mô tả như trạng thái ‘kiệt sức’ với đặc trưng là hoạt động cytotoxic hiệu quả kém, sản xuất cytokine bị suy giảm và biểu hiện liên tục của nhiều thụ thể ức chế, chẳng hạn như programmed cell death-1 (PD-1), gene hoạt hóa tế bào lympho-3, antigen liên kết tế bào T cytotoxic-4 và CD244. Cả tế bào T CD4+ và CD8+ đều tham gia vào các phản ứng miễn dịch chống lại viêm gan mãn tính thông qua những cách khác nhau, có nhiều bằng chứng thuyết phục đã được đưa ra, nhằm phục hồi chức năng kháng virus của các tế bào T kiệt sức này bằng cách chặn các thụ thể ức chế này với ligand của chúng và sẽ mở đường cho sự phát triển của các chiến lược miễn dịch điều trị và phòng ngừa hiệu quả hơn cho việc điều trị các bệnh truyền nhiễm mãn tính. Một số lượng lớn các nghiên cứu đã nêu bật sự thiết yếu của sự kiệt sức của tế bào T trong các bệnh nhiễm virus, chẳng hạn như LCMV, virus viêm gan C (HCV), nhiễm virus suy giảm miễn dịch ở người (HIV) và ung thư. Ngoài ra, việc phục hồi chức năng của tế bào T CD8+ đặc hiệu với HCV và HIV bằng cách chặn PD-1 đã được xác thực nhiều lần, và cũng đối với việc kiểm soát miễn dịch của khối u ở người, việc chặn con đường PD-1 có thể là một chiến lược miễn dịch chủ chốt. Mặc dù các con đường phân tử cụ thể của sự kiệt sức của tế bào T vẫn chưa rõ ràng, nhưng một số con đường phiên mã đã được liên quan đến sự kiệt sức của tế bào T gần đây; trong số đó, Blimp-1, T-bet và NFAT2 đã có khả năng điều chỉnh các tế bào T kiệt sức trong suốt quá trình nhiễm virus mãn tính, gợi ý về một số phận hệ dòng khác biệt cho phân nhóm tế bào T này. Bài viết này tổng hợp tài liệu hiện tại liên quan đến sự kiệt sức của tế bào T ở bệnh nhân viêm gan mãn tính liên quan đến HBV, các lựa chọn để xác định các mục tiêu điều trị tiềm năng mới để điều trị nhiễm HBV và nhấn mạnh các ưu tiên cho các nghiên cứu tiếp theo.
Từ khóa
Tài liệu tham khảo
Li X, Liu X, Tian L, Chen Y . Cytokine-Mediated Immunopathogenesis of Hepatitis B Virus Infections. Clin Rev Allergy Immunol 2014; e-pub ahead of print 6 December 2014; doi:10.1007/s12016-014-8465-4.
Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE, Purcell RH et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 2009; 83: 9652–9662.
Zhang Z, Zhang JY, Wang LF, Wang FS . Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol 2012; 27: 223–230.
Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV . CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol 2010; 184: 287–295.
Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009; 58: 974–982.
Bertoletti A, Gehring AJ . The immune response during hepatitis B virus infection. J Gen Virol 2006; 87: 1439–1449.
Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS . The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000; 191: 1269–1280.
Lopes AR, Kellam P, Das A, Dunn C, Kwan A, Turner J et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 2008; 118: 1835–1845.
Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007; 81: 4215–4225.
Yi JS, Cox MA, Zajac AJ . T-cell exhaustion: characteristics, causes and conversion. Immunology 2010; 129: 474–481.
Kim PS, Ahmed R . Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 2010; 22: 223–230.
Mumprecht S, Schürch C, Schwaller J, Solenthaler M, Ochsenbein AF . Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 2009; 114: 1528–1536.
Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114: 1537–1544.
Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D et al. PD-1 Is a Regulator of NY-ESO-1-Specific CD8(+) T Cell Expansion in Melanoma Patients. J Immunol 2009; 182: 5240–5249.
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28: 3167–3175.
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–687.
Homann D, Dummer W, Wolfe T, Rodrigo E, Theofilopoulos AN, Oldstone MB et al. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J Virol 2006; 80: 270–280.
Nakamoto N, Cho H, Shaked A, Olthoff K, Valiga ME, Kaminski M et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 2009; 5: e1000313.
Cecchinato V, Tryniszewska E, Ma ZM, Vaccari M, Boasso A, Tsai WP et al. Immune activation driven by CTLA-4 blockade augments viral replication at mucosal sites in simian immunodeficiency virus infection. J Immunol 2008; 180: 5439–5447.
Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009; 458: 206–210.
Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 2011; 12: 663–671.
Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE et al. Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 2014; 40: 289–302.
Chen L, Flies DB . Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13: 227–242.
Raziorrouh B, Schraut W, Gerlach T, Nowack D, Grüner NH, Ulsenheimer A et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 2010; 52: 1934–1947.
Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10: 29–37.
Bengsch B, Seigel B, Ruhl M, Timm J, Kuntz M, Blum HE et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 2010; 6: e1000947.
Bertoletti A, Costanzo A, Chisari FV, Levrero M, Artini M, Sette A et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 1994; 180: 933–943.
Porichis F, Kwon DS, Zupkosky J, Tighe DP, McMullen A, Brockman MA et al. Responsiveness of HIV-specific CD4 T cells to PD-1 blockade. Blood 2011; 118: 965–974.
Protzer U, Maini MK, Knolle PA . Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12: 201–213.
Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A 2004; 101: 10691–10696.
Okazaki T, Honjo T . The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27: 195–201.
Bengsch B, Martin B, Thimme R . Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J Hepatol 2014; 61: 1212–1219.
Fisicaro P, Valdatta C, Massari M, Loggi E, Biasini E, Sacchelli L et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010; 138: 682–693.
Schurich A, Pallett LJ, Lubowiecki M, Singh HD, Gill US, Kennedy PT et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLoS Pathog 2013; 9: e1003208.
Yang PL, Althage A, Chung J, Chisari FV . Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 2002; 99: 13825–13830.
Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen L, Chen PJ et al. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One 2012; 7: e39179.
Kurktschiev PD, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner CM et al. Dysfunctional CD8(+) T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med 2014; 211: 2047–2059.
Walunas TL, Bakker CY, Bluestone JA . CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996; 183: 2541–2550.
Krummel MF, Allison JP . CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183: 2533–2540.
Fallarino F, Fields PE, Gajewski TF . B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J Exp Med 1998; 188: 205–210.
Ise W, Kohyama M, Nutsch KM, Lee HM, Suri A, Unanue ER et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2010; 11: 129–135.
Peggs KS, Quezada SA, Allison JP . Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 2008; 224: 141–165.
Graefe SE, Jacobs T, Wächter U, Bröker BM, Fleischer B . CTLA-4 regulates the murine immune response to Trypanosoma cruzi infection. Parasite Immunol 2004; 26: 19–28.
Zubairi S, Sanos SL, Hill S, Kaye PM . Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing of Leishmania donovani. Eur J Immunol 2004; 34: 1433–1440.
Yu Y, Wu H, Tang Z, Zang G . CTLA4 silencing with siRNA promotes deviation of Th1/Th2 in chronic hepatitis B patients. Cell Mol Immunol 2009; 6: 123–127.
Thio CL, Mosbruger TL, Kaslow RA, Karp CL, Strathdee SA, Vlahov D et al. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J Virol 2004; 78: 11258–11262.
Schurich A, Khanna P, Lopes AR, Han KJ, Peppa D, Micco L et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 2011; 53: 1494–1503.
Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM et al. Reversal of the TCR stop signal by CTLA-4. Science 2006; 313: 1972–1975.
Keler T, Halk E, Vitale L, O'Neill T, Blanset D, Lee S et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003; 171: 6251–6259.
Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59: 81–88.
Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D et al. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 2010; 16: 1042–1048.
Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 2009; 27: 1075–1081.
Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol 2010; 28: 3485–3490.
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.
Kaufmann DE, Walker BD . PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 2009; 182: 5891–5897.
Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 2007; 8: 1246–1254.
Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL et al. A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 2009; 31: 309–320.
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245–1252.
Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ et al. Negative Immune Regulator Tim-3 is overexpressed on T Cells in Hepatitis C Virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T Cells. J Virol 2009; 83: 9122–9130.
Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 2008; 205: 2763–2779.
Nebbia G, Peppa D, Schurich A, Khanna P, Singh HD, Cheng Y et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One 2012; 7: e47648.
Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 2010; 52: 322–329.
Wada J, Ota K, Kumar A, Wallner EI, Kanwar YS . Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin. J Clin Invest 1997; 99: 2452–2461.
Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012; 56: 1342–1351.
Mengshol JA, Golden-Mason L, Arikawa T, Smith M, Niki T, McWilliams R et al. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS One 2010; 5: e9504.
Sehrawat S, Suryawanshi A, Hirashima M, Rouse BT . Role of Tim-3/galectin-9 inhibitory interaction in viral-induced immunopathology: shifting the balance toward regulators. J Immunol 2009; 182: 3191–3201.
Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell R et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003; 77: 68–76.
Das A, Hoare M, Davies N, Lopes AR, Dunn C, Kennedy PT et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 2008; 205: 2111–2124.
Zimmerli SC, Harari A, Cellerai C, Vallelian F, Bart PA, Pantaleo G . HIV-1-specific IFN-gamma/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc Natl Acad Sci U S A 2005; 102: 7239–7244.
Bertoletti A, Maini MK . Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr Opin Microbiol 2000; 3: 387–392.
Maeda S, Chang L, Li ZW, Luo JL, Leffert H, Karin M . IKK beta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNF alpha. Immunity 2003; 19: 725–737.
Su F, Schneider RJ . Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad sci U S A 1997; 94: 8744–8749.
Li L, Liu M, Cheng LW, Gao XY, Fu JJ, Kong G et al. HBcAg-specific IL-21-producing CD4+ T cells are associated with relative viral control in patients with chronic hepatitis B. Scand J Immunol 2013; 78: 439–446.
Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M et al. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A 2010; 107: 798–802.
Trautmann T, Kozik JH, Carambia A, Richter K, Lischke T, Schwinqe D et al. CD4+T-cell help is required for Effective CD8+T cell-Mediated resolution of acute viral hepatitis in mice. PLoS One 2014; 9: e86348.
Williams MA, Bevan MJ . Effector and memory CTL differentiation. Annu Rev Immunol 2007; 25: 171–192.
Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN . Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006; 440: 890–895.
Williams MA, Tyznik AJ, Bevan MJ . Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006; 441: 890–893.
Nakanishi Y, Lu B, Gerard C, Iwasaki A . CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 2009; 462: 510–513.
Ulsenheimer A, Gerlach JT, Gruener NH, Jung MC, Schirren CA, Schraut W et al. Detection of functionally altered hepatitis C virus-specific CD4 T cells in acute and chronic hepatitis C. Hepatology 2003; 37: 1189–1198.
Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012; 18: 1394–1400.
Antoine P, Olislagers V, Huygens A, Lecomte S, Liesnard C, Donner C et al. Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. J Immunol 2012; 189: 2665–2672.
Raziorrouh B, Heeq M, Kurktschiev P, Schraut W, Zachoval R, Wendtner C et al. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules. PLoS One 2014; 9: e105703.
Raziorrouh B, Ulsenheimer A, Schraut W, Heep M, Kurktschiev P, Zachoval R et al. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 2011; 141: 1422–1431.
Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, Streeck H et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J Exp Med 2012; 209: 61–75.
Kassu A, Marcus RA, D'Souza MB, Kelly-McKnight EA, Golden-Mason L, Akkina R et al. Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J Immunol 2010; 185: 3007–3018.
Rybakova KN, Tomaszewska A, van Mourik S, Blom J, Westerhoff HV, Carlberg C et al. Tracing the molecular basis of transcriptional dynamics in noisy data by using an experiment-based mathematical model. Nucleic Acids Res 2015; 43: 153–161.
Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52: 999–1007.
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D . Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19: 71–83.
Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A . Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase. Biochimie 2014; 101: 192–202.
Alatrakchi N, Graham CS, van der Vliet HJ, Sherman KE, Exley MA, Koziel MJ . Hepatitis C virus (HCV)-specific CD8(+) cells produce transforming growth factor beta that can suppress HCV-specific T-cell responses. J Virol 2007; 81: 5882–5892.
Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005; 41: 771–778.
Yang G, Liu A, Xie Q, Guo TB, Wan B, Zhou B et al. Association of CD4+CD25+Foxp3+ regulatory T cells with chronic activity and viral clearance in patients with hepatitis B. Int Immunol 2007; 19: 133–140.
Franzese O, Kennedy PT, Gehring AJ, Gotto J, Williams R, Maini MK et al. Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J Virol 2005; 79: 3322–3328.
Stoop JN, Claassen MA, Woltman AM, Binda RS, Kuipers EJ, Janssen HL et al. Intrahepatic regulatory T cells are phenotypically distinct from their peripheral counterparts in chronic HBV patients. Clin Immunol 2008; 129: 419–427.
Claassen MA, de Knegt RJ, Turgut D, Groothuismink ZM, Janssen HL, Boonstra A . Negative regulation of hepatitis C virus specific immunity is highly heterogeneous and modulated by pegylated interferon-alpha/ribavirin therapy. PLoS One 2012; 7: e49389.
Maier H, Isogawa M, Freeman GJ, Chisari FV . PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. J Immunol 2007; 178: 2714–2720.
Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 2012; 338: 1220–1225.
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27: 670–684.
Collins MH, Henderson AJ . Transcriptional regulation and T cell exhaustion. Curr Opin HIV AIDS 2014; 9: 459–463.
Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim HP, Oh J, Tunyaplin C et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 2009; 31: 941–952.
Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH . The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy 2011; 3: 1167–1184.
La Cava A, Van Kaer L . Fu-Dong-Shi. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol 2006; 27: 322–327.
Chen CF, Feng X, Liao HY, Jin WJ, Zhang J, Wang Y et al. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci Rep 2014; 4: 6359.