Systems pharmacology based approach to investigate the in-vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson’s disease
Tóm tắt
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta and clinically manifested mainly with motor dysfunctions. Plants are rich source of medicinally important bioactive compounds and inhabitants of underdeveloped countries used plants for treatment of various ailments. Albizia lebbeck has been reported to possess antioxidant and neuroprotective properties that suggest the evaluation of its traditional therapeutic potential in neurodegenerative diseases. The aim of present study was to validate the traditional use of Albizia lebbeck (L.) and delineate its mechanism of action in PD. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. The haloperidol-induced catalepsy was adopted as experimental model of PD for in-vivo studies in wistar albino rats. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. In-vivo studies revealed that Albizia lebbeck improved the motor functions and endurance as demonstrated in behavioral studies which were further supported by the rescue of endogenous antioxidant defense and reversal of ultrastructural damages in histological studies. System pharmacology approach identified 25 drug like compounds interacting with 132 targets in a bipartite graph that revealed the synergistic mechanism of action at system level. Kaemferol, phytosterol and okanin were found to be the important compounds nodes with prominent target nodes of TDP1 and MAPT. The therapeutic efficiency of Albizia lebbeck in PD was effectively delineated in our experimental and systems pharmacology approach. Moreover, this approach further facilitates the drug discovery from Albizia lebbeck for PD.
Tài liệu tham khảo
Hussain G, Rasul A, Anwar H, Sohail MU, Kashif Shahid Kamran S, Baig S, Shabbir A, Iqbal J. Epidemiological data of neurological disorders in Pakistan and neighboring countries: a review. Pakistan. J Neurol Sci. 2017;12(4):12.
Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson's disease: pathophysiology to management. Neurol Sci. 2019;40(1):13–23.
Cheng H-C, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67(6):715–25.
Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson's disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–8.
Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson's disease. Am J Transl Res. 2015;7(7):1189–202.
Li Y, Zhang J, Zhang L, Chen X, Pan Y, Chen SS, Zhang S, Wang Z, Xiao W, Yang L, et al. Systems pharmacology to decipher the combinational anti-migraine effects of Tianshu formula. J Ethnopharmacol. 2015;174:45–56.
Srivastav Neeti SS, Vijay J, Tiwari Brijesh K. Anti convulsant activity of leaf extracts of Albizia lebbeck linnn in n experimental rats. Int J Pharm Sci Rev Res. 2016:173–6.
Verma DS, Vashishth E, Singh R, Kumari A, Meena A, Pant P, Bhuyan GC, Padhi MM. A review on parts of Albizia lebbeck (L.) Benth. Used as Ayurvedic drugs. Res J Pharm Technol. 2013;6(11):1307–13.
Narasimhan PB, Pandikumar P, Ignacimuthu S. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J Ethnopharmacol. 2009;125(2):356–60.
Abd El-Ghany AES, Dora G, Abdallah RH, Hassan W, El-Salam EA. Phytochemical and biological study of Albizia lebbeck stem bark. J Chem Pharma Res. 2015;7(5):29–43.
Patel T, Shirode D, Pal Roy S, Kumar S, Siddamsetty RS. Evaluation of Antioxidant and Hepatoprotective effects of 70% ethanolic bark extract of Albizzia lebbeck in rats. Int J Res Pharm Sci. 2010;1(3):270–6.
Resmi CR, Venukumar MR, Latha MS. Antioxidant activity of Albizzia lebbeck (Linn.) Benth. In alloxan diabetic rats. Indian J Physiol Pharmacol. 2006;50(3):297–302.
Gupta RS, Chaudhary R, Yadav RK, Verma SK, Dobhal MP. Effect of Saponins of Albizia lebbeck (L.) Benth bark on the reproductive system of male albino rats. J Ethnopharmacol. 2005;96(1–2):31–6.
El-Hawary S, Sokkar NM, El-Fouly K, Talaat Z. A phytochemical profile of Albizia lebbeck (L.) benth. Cultivated in Egypt. Asian J Biochem. 2011;6(2):122–41.
Zia-Ul-Haq M, Ahmad S, Qayum M, Ercisli S. Compositional studies and antioxidant potential of Albizia lebbeck L. Benth. Pods and seeds. Turk J Biol. 2013;37(1):25–32.
Wati M, Khabiruddin M. Comparision of antioxidants in phenol extract and methanol extract of Albizia lebbeck from two locations. Int J Pharm Sci Rev Res Int. 2017;45(1):78–82.
Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2009;2(5):270–8.
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat. 2015;9:91.
Velraj M, A V, Jayakumari S, Ramamoorthy S, Jeyabalan S. Antidepressant activity of the ethanolic extract of Albizzia lebbeck (Linn) bark in animal models of depression. 2009;1:112–5.
Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol. 2000;71(1–2):65–75.
Une HD, Sarveiya VP, Pal SC, Kasture VS, Kasture SB. Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves. Pharmacol Biochem Behav. 2001;69(3–4):439–44.
Chitra V, KM, AM, Thamaraikani T,K G. Effect of hydroalcoholic extract of Achyranthes aspera on haloperidol-induced Parkinson’s disease in Wistar rats. 2017;10(9):318–21.
Mograbi KM, de Castro AC, de Oliveira JA, Sales PJ, Covolan L, Del Bel EA, de Souza AS. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep. 2017;5(6).
Caudal D, Guinobert I, Lafoux A, Bardot V, Cotte C, Ripoche I, Chalard P, Huchet C. Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice. JTCME J Tradit Complement Med. 2018;8(2):335–40.
Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med. 2018;18(1):1–12.
Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats. Neurochem Res. 2015;40(4):767–76.
Hira S, Saleem U, Anwar F, Ahmad B. Antioxidants attenuate isolation-and L- DOPA-induced aggression in mice. Front Pharmacol. 2018;8:945.
Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Investigation of in vivo antioxidant activity of Euphorbia helioscopia latex and leaves methanol extract: a target against oxidative stress induced toxicity. Asian Pac J Trop Med. 2014;7:S369–S375.
Duke J, Bogenschutz MJ. Dr. Duke's phytochemical and ethnobotanical databases. USDA, Agricultural Research Service; 1994.
Karthikeyan Mohanraj BSK, R.P. Vivek-Ananth, R.P. Bharath Chand, S.R. Aparna, P. Mangalapandi, Areejit Samal: IMPPAT: a curated database of Indian medicinal plants, Phytochemistry Ther 2018, 8:4329.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32–8.
Paul D, Thomas MJC, Kejariwal A, Huaiyu mi, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research. 2016;gkw937.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Sanberg PR. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nat. 1980;284(5755):472–3.
Klemm WR. Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacol. 1985;85(2):139–42.
Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS. Neuroleptic-induced catalepsy as a model of Parkinson's disease. I. Effect of dopaminergic agents. J Neural Transm Park Dis Dement Sect. 1990;2(2):79–89.
Polydoro M, Schroder N, Lima MN, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JC, Dal-Pizzol F. Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav. 2004;78(4):751–6.
Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, Zecca L. Neuromelanin of the human substantia nigra: an update. Neurotox Res. 2014;25(1):13–23.
Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–22.
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.
Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G. Superoxide dismutase activity in early and advanced Parkinson's disease. Funct Neurol. 1997;12(2):63–8.
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–40.
Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today. 2014;19(12):1871–82.
Liu J, Pei M, Zheng C, Li Y, Wang Y, Lu A, Yang L. A systems-pharmacology analysis of herbal medicines used in health improvement treatment: predicting potential new drugs and targets. Evid Based Complement Alternat Med. 2013;2013:17.
Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nat. 2001;411:41.
Azuaje FJ, Zhang L, Devaux Y, Wagner DR. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep. 2011;1:52.
Koschützki D, Schreiber F. Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks. Gene Regul Syst Biol. 2008;2:GRSB–S702.
Pommier Y, SyN H, Gao R, Das BB, Murai J, Marchand C. Tyrosyl-DNA-phosphodiesterases TDP1 and TDP2. DNA Repair. 2014;19:114–29.
Katyal S, El Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, PJ MK. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26(22):4720–31.
Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–904.
Das G, Misra AK, Das SK, Ray K, Ray J. Microtubule-associated protein tau (MAPT) influences the risk of Parkinson's disease among Indians. Neurosci Lett. 2009;460(1):16–20.
Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia risk in parkinson disease: disentangling the role of mapt haplotypes. Arch Neurol. 2011;68(3):359–64.
Edwards YJK, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER, Jiang Z, Mash DC, Mullen J F, et al. Identifying consensus disease pathways in Parkinson's disease using an integrative systems biology approach. PLoS One. 2011;6(2):e16917.
Kong Y, Liang X, Liu L, Zhang D, Wan C, Gan Z, Yuan L. High throughput sequencing identifies MicroRNAs mediating alpha-Synuclein toxicity by targeting Neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson's disease model. PLoS One. 2015;10(9):e0137432.
Chen CPLH, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJF. Post-Synaptic 5-HT1A and 5-HT2A Receptors Are Increased in Parkinson's Disease Neocortex. Annals NY Acad Sci. 1998;861(1):288–9.
Politis M, Loane C. Serotonergic dysfunction in Parkinson's disease and its relevance to disability. TheScientificWorldJournal. 2011;11:1726–34.
Pagano G, Niccolini F, Politis M. The serotonergic system in Parkinson's patients with dyskinesia: evidence from imaging studies. J Neural transm Vienna. 2018;125(8):1217–23.
Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci. 2011;5:11.
Perez-Lloret S, Barrantes FJ: Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. Npj Parkinson'S Disease 2016, 2:16001.
Bohush A, Niewiadomska G, Filipek A. Role of mitogen activated protein kinase signaling in Parkinson's disease. Int J Mol Sci. 2018;19(10):2973.