Systematic study of single-cell isolation from musculoskeletal tissues for single-sell sequencing

BMC Molecular and Cell Biology - Tập 23 - Trang 1-13 - 2022
Manman Gao1,2,3, Peng Guo2,3, Xizhe Liu3, Penghui Zhang2, Zhongyuan He2, Liru Wen4, Shaoyu Liu2,3, Zhiyu Zhou2,3, Weimin Zhu1
1Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
2Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
3Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
4Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China

Tóm tắt

The single-cell platform provided revolutionary way to study cellular biology. Technologically, a sophistic protocol of isolating qualified single cells would be key to deliver to single-cell platform, which requires high cell viability, high cell yield and low content of cell aggregates or doublets. For musculoskeletal tissues, like bone, cartilage, nucleus pulposus and tendons, as well as their pathological state, which are tense and dense, it’s full of challenge to efficiently and rapidly prepare qualified single-cell suspension. Conventionally, enzymatic dissociation methods were wildly used but lack of quality control. In the present study, we designed the rapid cycling enzymatic processing method using tissue-specific enzyme cocktail to treat different human pathological musculoskeletal tissues, including degenerated nucleus pulposus (NP), ossifying posterior longitudinal ligament (OPLL) and knee articular cartilage (AC) with osteoarthritis aiming to rapidly and efficiently harvest qualified single-cell suspensions for single-cell RNA-sequencing (scRNA-seq). We harvested highly qualified single-cell suspensions from NP and OPLL with sufficient cell numbers and high cell viability using the rapid cycling enzymatic processing method, which significantly increased the cell viability compared with the conventional long-time continuous digestion group (P < 0.05). Bioanalyzer trace showed expected cDNA size distribution of the scRNA-seq library and a clear separation of cellular barcodes from background partitions were verified by the barcode-rank plot after sequencing. T-SNE visualization revealed highly heterogeneous cell subsets in NP and OPLL. Unfortunately, we failed to obtain eligible samples from articular cartilage due to low cell viability and excessive cell aggregates and doublets. In conclusion, using the rapid cycling enzymatic processing method, we provided thorough protocols for preparing single-cell suspensions from human musculoskeletal tissues, which was timesaving, efficient and protective to cell viability. The strategy would greatly guarantee the cell heterogeneity, which is critical for scRNA-seq data analysis. The protocol to treat human OA articular cartilage should be further improved.

Tài liệu tham khảo

Mazzarello P. A unifying concept: the history of cell theory. NAT CELL BIOL. 1999;1(1):E13–5. Hu P, Zhang W, Xin H, Deng G. Single Cell Isolation and Analysis. Frontiers in cell and developmental biology. 2016;4:116. He X, Memczak S, Qu J, Belmonte JCI, Liu G. Single-cell omics in ageing: a young and growing field. Nat Metab. 2020;2(4):293–302. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. NAT METHODS. 2009;6(5):377–82. Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015;163(4):799–810. Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Experimental Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol. 2018;6:108. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177(7):1915–32. Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J ORTHOP RES. 2006;24(9):1906–15. Inoue N, Espinoza OA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487–99. Gan Y, He J, Zhu J, Xu Z, Wang Z, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9(1):37. Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep-Uk. 2020;10(1):15263. Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. In: International Journal of Molecular Sciences., vol. 22; 2021. Zhang Y, Han S, Kong M, Tu Q, Zhang L, et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthr Cartilage. 2021;29(9):1324–34. Tu J, Li W, Yang S, Yang P, Yan Q, et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. bioRxiv. 2021:2021–2025. Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood. 2004;104(9):2728–35. Prideaux M, Schutz C, Wijenayaka AR, Findlay DM, Campbell DG, Solomon LB, et al. Isolation of osteocytes from human trabecular bone. Bone. 2016;88:64–72. Inoue N, Espinoza Orías AA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487. Choi Y. Pathophysiology of degenerative disc disease. Asian spine journal. 2009;3(1):39–44. Zhou Z, Gao M, Wei F, Liang J, Deng W, Dai X, et al. Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro. BIOMED RES INT. 2014;2014: 461724. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976). 2004;29(23):2691–9. Urban JPG, Roberts S, Ralphs JR. The Nucleus of the Intervertebral Disc from Development to Degeneration1. Am Zool. 2015;40(1):53–61. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J CLIN INVEST. 1996;98(4):996–1003. Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, et al. Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop. 2012;2012: 970752. Hemanta D, Jiang X, Feng Z, Chen Z, Cao Y. Etiology for Degenerative Disc Disease. Chin Med Sci J. 2016;31(3):185–91. Lee JT, Cheung KM, Leung VY. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J ORTHOP RES. 2015;33(12):1743–55. Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, et al. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. CARTILAGE. 2020;11(2):169–80. Nam DC, Lee HJ, Lee CJ, Hwang S. Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL). BIOMOL THER. 2019;27(4):342–8. Zhang Q, Zhou D, Wang H, Tan J. Heterotopic ossification of tendon and ligament. J CELL MOL MED. 2020;24(10):5428–37. Choi BW, Song KJ, Chang H. Ossification of the posterior longitudinal ligament: a review of literature. Asian Spine J. 2011;5(4):267–76. ONO K, OTA H, TADA K, HAMADA H, TAKAOKA K. Ossified Posterior Longitudinal Ligament: A Clinicopathologic Study. SPINE. 1977;2(2). Hashizume Y. Pathological studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn. 1980;30(2):255–73. Sophia FA, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. SPORTS HEALTH. 2009;1(6):461–8. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. LANCET. 2018;392(10159):1789–1858. Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37–41. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019;393(10182):1745–59. Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J AUTOIMMUN. 2020;110: 102400. McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. NEW ENGL J MED. 2011;365(23):2205–19. Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. npj Regenerative Medicine. 2019;4(1):12. Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. ANN RHEUM DIS. 2019;78(1):100–10. Grandi FC, Baskar R, Smeriglio P, Murkherjee S, Indelli PF, Amanatullah DF, et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. SCI ADV. 2020;6(11): y5352. Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, et al. Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq. CELL REP. 2016;15(7):1467–80. Sunkara V, Heinz G, Heinrich F, Durek P, Mobasheri A, Mashreghi M, et al. Combining segmental bulk- and single-cell RNA-sequencing to define the chondrocyte gene expression signature in the murine knee joint. In.: bioRxiv; 2020. Mizuhashi K, Nagata M, Matsushita Y, Ono W, Ono N. Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells. J BONE MINER RES. 2019;34(8):1387–92. Kelly NH, Huynh N, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. MATRIX BIOL. 2020;89:1–10. Renner WA, Jordan M, Eppenberger HM, Leist C. Cell-cell adhesion and aggregation: Influence on the growth behavior of CHO cells. BIOTECHNOL BIOENG. 1993;41(2):188–93. Reichard A, Asosingh K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytometry A. 2019;95(2):219–26. Hanamsagar R, Reizis T, Chamberlain M, Marcus R, Nestle FO, de Rinaldis E, et al. An optimized workflow for single-cell transcriptomics and repertoire profiling of purified lymphocytes from clinical samples. SCI REP-UK. 2020;10(1):2219. Ordoñez-Rueda D, Baying B, Pavlinic D, Alessandri L, Yeboah Y, Landry JJM, et al. Apoptotic Cell Exclusion and Bias-Free Single-Cell Selection Are Important Quality Control Requirements for Successful Single-Cell Sequencing Applications. CYTOM PART A. 2020;97(2):156–67. Zeng W, Jiang S, Kong X, El-Ali N, Ball AJ, Ma CI, et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. NUCLEIC ACIDS RES. 2016;44(21): e158. Liang Q, Dharmat R, Owen L, Shakoor A, Li Y, Kim S, et al. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling. NAT COMMUN. 2019;10(1):5743.