Systematic optimization of long-range corrected hybrid density functionals

Journal of Chemical Physics - Tập 128 Số 8 - 2008
Jeng‐Da Chai1, Martin Head‐Gordon1
1University of California and Chemical Sciences Division Department of Chemistry, , Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Tóm tắt

A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some “difficult problems,” such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals.

Từ khóa


Tài liệu tham khảo

1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

1966, Phys. Rev., 145, 561, 10.1103/PhysRev.145.561

1989, Density-Functional Theory of Atoms and Molecules

1990, Density Functional Theory: An Approach to the Quantum Many Body Problem

1995, Recent Advances in Density Functional Methods

1996, Density Functional Theory II

1996, J. Phys. Chem., 100, 12974, 10.1021/jp960669l

1997, J. Phys. Chem. A, 101, 7923, 10.1021/jp972378y

1998, J. Phys. Chem. A, 102, 7872, 10.1021/jp982441z

2001, J. Phys. Chem. A, 105, 9211, 10.1021/jp011239k

2003, Chem. Phys. Lett., 382, 203, 10.1016/j.cplett.2003.10.025

2005, J. Chem. Phys., 122, 224103, 10.1063/1.1926277

2006, J. Chem. Phys., 125, 201102, 10.1063/1.2403848

2007, J. Chem. Phys., 126, 104102, 10.1063/1.2566637

2006, Chem. Phys. Lett., 422, 230, 10.1016/j.cplett.2006.02.025

2003, J. Phys. Chem., 119, 2943, 10.1063/1.1590951

2004, J. Am. Chem. Soc., 126, 4007, 10.1021/ja039556n

2005, Chem. Rev. (Washington, D.C.), 105, 4009, 10.1021/cr0505627

1993, J. Chem. Phys., 98, 5648, 10.1063/1.464913

2004, J. Chem. Phys., 121, 3405, 10.1063/1.1774975

1994, J. Phys. Chem., 98, 11623, 10.1021/j100096a001

1988, Phys. Rev. A, 38, 3098, 10.1103/PhysRevA.38.3098

1988, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785

1934, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618

1997, J. Chem. Phys., 107, 8554, 10.1063/1.475007

1998, J. Chem. Phys., 109, 400, 10.1063/1.476577

1998, J. Chem. Phys., 109, 6264, 10.1063/1.477267

2001, J. Chem. Phys., 115, 9233, 10.1063/1.1412605

2005, J. Chem. Phys., 123, 121103, 10.1063/1.2061227

2000, J. Chem. Phys., 112, 1670, 10.1063/1.480732

2001, J. Chem. Phys., 114, 5497, 10.1063/1.1347371

2006, J. Chem. Theory Comput., 2, 364, 10.1021/ct0502763

2003, J. Chem. Phys., 119, 2972, 10.1063/1.1589733

2005, J. Chem. Phys., 122, 064101, 10.1063/1.1844493

1976, Phys. Rev. A, 14, 36, 10.1103/PhysRevA.14.36

1982, Phys. Rev. B, 26, 4371, 10.1103/PhysRevB.26.4371

1997, Mol. Eng., 7, 27, 10.1023/A:1008218128189

Dreizler, 1985, Density Functional Methods in Physics, 177, 10.1007/978-1-4757-0818-9

Seminario, 1996, Recent Developments and Applications of Modern Density Functional Theory, 327

1997, Chem. Phys. Lett., 275, 151, 10.1016/S0009-2614(97)00758-6

2005, J. Chem. Phys., 122, 014110, 10.1063/1.1824896

2005, Phys. Rev. A, 72, 012510, 10.1103/PhysRevA.72.012510

2005, Phys. Chem. Chem. Phys., 7, 3917, 10.1039/b509242f

2006, Chem. Phys., 329, 276, 10.1016/j.chemphys.2006.05.020

2001, J. Chem. Phys., 115, 3540, 10.1063/1.1383587

2004, J. Chem. Phys., 120, 8425, 10.1063/1.1688752

2005, Chem. Phys. Lett., 415, 100, 10.1016/j.cplett.2005.08.060

2007, J. Chem. Phys., 127, 054101, 10.1063/1.2759209

2006, J. Chem. Phys., 125, 074106, 10.1063/1.2244560

2006, J. Chem. Phys., 125, 234109, 10.1063/1.2409292

2007, J. Chem. Phys., 126, 154105, 10.1063/1.2721532

2007, J. Chem. Phys., 126, 191109, 10.1063/1.2741248

1996, Mol. Phys., 88, 1005, 10.1080/00268979650026037

1999, J. Comput. Chem., 20, 921, 10.1002/(SICI)1096-987X(19990715)20:9<921::AID-JCC3>3.0.CO;2-K

2004, Chem. Phys. Lett., 393, 51, 10.1016/j.cplett.2004.06.011

1992, Phys. Rev. B, 45, 13244, 10.1103/PhysRevB.45.13244

1978, Theor. Chim. Acta, 49, 143, 10.1007/BF02399063

1980, Theor. Chim. Acta, 55, 29, 10.1007/BF00551408

1993, Phys. Rev. A, 47, 3649, 10.1103/PhysRevA.47.3649

1997, J. Chem. Phys., 106, 1063, 10.1063/1.473182

1998, J. Chem. Phys., 109, 42, 10.1063/1.476538

2000, J. Chem. Phys., 112, 7374, 10.1063/1.481336

1989, J. Chem. Phys., 90, 5622, 10.1063/1.456415

2004, J. Phys. Chem. A, 108, 2715, 10.1021/jp049908s

2005, J. Phys. Chem. A, 109, 2012, 10.1021/jp045141s

2006, J. Phys. Chem. A, 110, 4942, 10.1021/jp061040d

2006, Phys. Chem. Chem. Phys., 8, 1985, 10.1039/b600027d

2007, J. Chem. Phys., 126, 074111, 10.1063/1.2566459

2006, Phys. Chem. Chem. Phys., 8, 3172, 10.1039/b517914a

1993, Chem. Phys. Lett., 209, 506, 10.1016/0009-2614(93)80125-9

2001, J. Chem. Phys., 114, 108, 10.1063/1.1321305

2006, J. Chem. Phys., 124, 091102, 10.1063/1.2179072

1970, Mol. Phys., 19, 553, 10.1080/00268977000101561

2005, J. Chem. Phys., 123, 124107, 10.1063/1.2039080

2007, J. Chem. Phys., 126, 084108, 10.1063/1.2436888

Chase, 1998, fourth edition

1993, Mol. Phys., 78, 997, 10.1080/00268979300100651

1999, Dokl. Math., 59, 477

2005, J. Phys. Chem. A, 109, 5656, 10.1021/jp050536c

2007, J. Comput. Chem., 28, 839, 10.1002/jcc.20604

1970, J. Chem. Phys., 53, 851, 10.1063/1.1674078

2005, J. Chem. Phys., 122, 184310, 10.1063/1.1891685

2002, J. Chem. Phys., 116, 3662, 10.1063/1.1436111

2004, J. Chem. Phys., 120, 638, 10.1063/1.1621618

1981, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048

1982, J. Chem. Phys., 76, 1910, 10.1063/1.443164

1989, Chem. Phys. Lett., 157, 479, 10.1016/S0009-2614(89)87395-6

2006, J. Phys. Chem. A, 110, 13126, 10.1021/jp066479k