So sánh hệ thống các phương pháp đồng bộ dữ liệu bốn chiều với và không có mô hình tuyến tính tiếp giáp bằng cách sử dụng sai số nền hiệp đồng: E4DVar so với 4DEnVar
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bishop, 2011, Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation, Mon. Wea. Rev., 139, 1241, 10.1175/2010MWR3403.1
Bishop, 2013, Hidden error variance theory. Part I: Exposition and analytic model, Mon. Wea. Rev., 141, 1454, 10.1175/MWR-D-12-00118.1
Buehner, 2005, Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting, Quart. J. Roy. Meteor. Soc., 131, 1013, 10.1256/qj.04.15
Buehner, 2010, Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments, Mon. Wea. Rev., 138, 1550, 10.1175/2009MWR3157.1
Buehner, 2010, Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations, Mon. Wea. Rev., 138, 1567, 10.1175/2009MWR3158.1
Clayton, 2013, Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office, Quart. J. Roy. Meteor. Soc., 139, 1445, 10.1002/qj.2054
Courtier, 1994, A strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120, 1367, 10.1002/qj.49712051912
Etherton, 2004, Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error, Mon. Wea. Rev., 132, 1065, 10.1175/1520-0493(2004)132<1065:ROHDAS>2.0.CO;2
Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10 143, 10.1029/94JC00572
Fairbairn, 2014, A comparison of 4DVar with ensemble data assimilation methods, Quart. J. Roy. Meteor. Soc., 140, 281, 10.1002/qj.2135
Fisher, 2001
Gustafsson, 2014, Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM), Nonlinear Processes Geophys., 21, 745, 10.5194/npg-21-745-2014
Hamill, 2000, A hybrid ensemble Kalman filter-3D variational analysis scheme, Mon. Wea. Rev., 128, 2905, 10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
Honda, 2005, A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results, Quart. J. Roy. Meteor. Soc., 131, 3465, 10.1256/qj.05.132
Houtekamer, 1998, Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., 126, 796, 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
Huang, 2009, Four-dimensional variational data assimilation for WRF: Formulation and preliminary results, Mon. Wea. Rev., 137, 299, 10.1175/2008MWR2577.1
Kuhl, 2013, Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework, Mon. Wea. Rev., 141, 2740, 10.1175/MWR-D-12-00182.1
Le Dimet, 1986, Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, 38A, 97, 10.1111/j.1600-0870.1986.tb00459.x
Liu, 2013, An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data, Mon. Wea. Rev., 141, 2721, 10.1175/MWR-D-12-00130.1
Liu, 2008, An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test, Mon. Wea. Rev., 136, 3363, 10.1175/2008MWR2312.1
Liu, 2009, An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW), Mon. Wea. Rev., 137, 1687, 10.1175/2008MWR2699.1
Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteor. Soc. Japan, 75, 339, 10.2151/jmsj1965.75.1B_339
Lorenc, 2003, The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var, Quart. J. Roy. Meteor. Soc., 129, 3183, 10.1256/qj.02.132
Lorenc, 2000, The Met Office global three-dimensional variational data assimilation scheme, Quart. J. Roy. Meteor. Soc., 126, 2991, 10.1002/qj.49712657002
Lorenc, 2014
Lorenz, 1996
Lorenz, 1998, Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci., 55, 399, 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
Poterjoy, 2014, Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010), Mon. Wea. Rev., 10.1175/MWR-D-13-00394.1
Sun, 1997, Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments, J. Atmos. Sci., 54, 1642, 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
Thepáut, 1991, Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model, Quart. J. Roy. Meteor. Soc., 117, 1225, 10.1002/qj.49711750206
Thepáut, 1996, Dynamical structure functions in a four-dimensional variational assimilation: A case study, Quart. J. Roy. Meteor. Soc., 122, 535, 10.1002/qj.49712253012
Wang, 2014, GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System, Mon. Wea. Rev., 142, 3303, 10.1175/MWR-D-13-00303.1
Wang, 2007, On the theoretical equivalence of differently proposed ensemble-3DVar hybrid analysis schemes, Mon. Wea. Rev., 135, 222, 10.1175/MWR3282.1
Zhang, 2004, Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter, Mon. Wea. Rev., 132, 1238, 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
Zhang, 2009, Coupling ensemble Kalman filter with four-dimensional variational data assimilation, Adv. Atmos. Sci., 26, 1, 10.1007/s00376-009-0001-8
Zhang, 2013, E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar, Mon. Wea. Rev., 141, 900, 10.1175/MWR-D-12-00075.1