Systematic Comparison of Four-Dimensional Data Assimilation Methods With and Without the Tangent Linear Model Using Hybrid Background Error Covariance: E4DVar versus 4DEnVar
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bishop, 2011, Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation, Mon. Wea. Rev., 139, 1241, 10.1175/2010MWR3403.1
Bishop, 2013, Hidden error variance theory. Part I: Exposition and analytic model, Mon. Wea. Rev., 141, 1454, 10.1175/MWR-D-12-00118.1
Buehner, 2005, Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting, Quart. J. Roy. Meteor. Soc., 131, 1013, 10.1256/qj.04.15
Buehner, 2010, Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments, Mon. Wea. Rev., 138, 1550, 10.1175/2009MWR3157.1
Buehner, 2010, Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations, Mon. Wea. Rev., 138, 1567, 10.1175/2009MWR3158.1
Clayton, 2013, Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office, Quart. J. Roy. Meteor. Soc., 139, 1445, 10.1002/qj.2054
Courtier, 1994, A strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120, 1367, 10.1002/qj.49712051912
Etherton, 2004, Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error, Mon. Wea. Rev., 132, 1065, 10.1175/1520-0493(2004)132<1065:ROHDAS>2.0.CO;2
Evensen, 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10 143, 10.1029/94JC00572
Fairbairn, 2014, A comparison of 4DVar with ensemble data assimilation methods, Quart. J. Roy. Meteor. Soc., 140, 281, 10.1002/qj.2135
Fisher, 2001
Gustafsson, 2014, Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM), Nonlinear Processes Geophys., 21, 745, 10.5194/npg-21-745-2014
Hamill, 2000, A hybrid ensemble Kalman filter-3D variational analysis scheme, Mon. Wea. Rev., 128, 2905, 10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
Honda, 2005, A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results, Quart. J. Roy. Meteor. Soc., 131, 3465, 10.1256/qj.05.132
Houtekamer, 1998, Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., 126, 796, 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
Huang, 2009, Four-dimensional variational data assimilation for WRF: Formulation and preliminary results, Mon. Wea. Rev., 137, 299, 10.1175/2008MWR2577.1
Kuhl, 2013, Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework, Mon. Wea. Rev., 141, 2740, 10.1175/MWR-D-12-00182.1
Le Dimet, 1986, Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, 38A, 97, 10.1111/j.1600-0870.1986.tb00459.x
Liu, 2013, An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data, Mon. Wea. Rev., 141, 2721, 10.1175/MWR-D-12-00130.1
Liu, 2008, An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test, Mon. Wea. Rev., 136, 3363, 10.1175/2008MWR2312.1
Liu, 2009, An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW), Mon. Wea. Rev., 137, 1687, 10.1175/2008MWR2699.1
Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteor. Soc. Japan, 75, 339, 10.2151/jmsj1965.75.1B_339
Lorenc, 2003, The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var, Quart. J. Roy. Meteor. Soc., 129, 3183, 10.1256/qj.02.132
Lorenc, 2000, The Met Office global three-dimensional variational data assimilation scheme, Quart. J. Roy. Meteor. Soc., 126, 2991, 10.1002/qj.49712657002
Lorenc, 2014
Lorenz, 1996
Lorenz, 1998, Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci., 55, 399, 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
Poterjoy, 2014, Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010), Mon. Wea. Rev., 10.1175/MWR-D-13-00394.1
Sun, 1997, Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments, J. Atmos. Sci., 54, 1642, 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
Thepáut, 1991, Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model, Quart. J. Roy. Meteor. Soc., 117, 1225, 10.1002/qj.49711750206
Thepáut, 1996, Dynamical structure functions in a four-dimensional variational assimilation: A case study, Quart. J. Roy. Meteor. Soc., 122, 535, 10.1002/qj.49712253012
Wang, 2014, GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System, Mon. Wea. Rev., 142, 3303, 10.1175/MWR-D-13-00303.1
Wang, 2007, On the theoretical equivalence of differently proposed ensemble-3DVar hybrid analysis schemes, Mon. Wea. Rev., 135, 222, 10.1175/MWR3282.1
Zhang, 2004, Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter, Mon. Wea. Rev., 132, 1238, 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
Zhang, 2009, Coupling ensemble Kalman filter with four-dimensional variational data assimilation, Adv. Atmos. Sci., 26, 1, 10.1007/s00376-009-0001-8
Zhang, 2013, E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar, Mon. Wea. Rev., 141, 900, 10.1175/MWR-D-12-00075.1