System-Level Insights into Yeast Metabolism by Thermodynamic Analysis of Elementary Flux Modes

PLoS Computational Biology - Tập 8 Số 3 - Trang e1002415
Stefan J. Jol1,2, Anne Kümmel1, Marco Terzer3, Jörg Stelling3,4, Matthias Heinemann1,5
1Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
2Life Science Zurich PhD Program on Systems Biology of Complex Diseases, ETH Zurich, Zurich, Switzerland
3Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
4Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
5Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

U Sauer, 2006, Metabolic networks in motion: 13C-based ux analysis., Mol Syst Biol, 2, 62, 10.1038/msb4100109

N Zamboni, 2009, Novel biological insights through metabolomics and 13C-ux analysis., Curr Opin Microbiol, 12, 553, 10.1016/j.mib.2009.08.003

T Fuhrer, 2009, Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism., J Bacteriol, 191, 2112, 10.1128/JB.01523-08

SM Fendt, 2010, Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates., BMC Syst Biol, 4, 12, 10.1186/1752-0509-4-12

RJ Kleijn, 2007, Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMRderived C-labelling data., FEMS Yeast Res, 7, 216, 10.1111/j.1567-1364.2006.00180.x

N Zamboni, 2009, (13)C-based metabolic flux analysis., Nat Protoc, 4, 878, 10.1038/nprot.2009.58

N Zamboni, 2010, (13)C metabolic flux analysis in complex systems., Curr Opin Biotechnol, 22, 103, 10.1016/j.copbio.2010.08.009

U Sonnewald, 2004, Intracellular metabolic compartmentation assessed by 13C magnetic resonance spectroscopy., Neurochem Int, 45, 305, 10.1016/j.neuint.2003.10.010

J Niklas, 2010, Metabolic ux analysis in eukaryotes., Curr Opin Biotechnol, 21, 63, 10.1016/j.copbio.2010.01.011

KJ Kauffman, 2003, Advances in flux balance analysis., Curr Opin Biotechnol, 14, 491, 10.1016/j.copbio.2003.08.001

PDN Pissarra, 1997, Thermodynamics of Metabolic Pathways for Penicillin Production: Analysis of Thermodynamic Feasibility and Free Energy Changes During Fed-Batch Cultivation., Biotechnol Prog, 13, 156, 10.1021/bp970010c

A Kümmel, 2006, Putative regulatory sites unraveled by networkembedded thermodynamic analysis of metabolome data., Mol Syst Biol, 2, 2006.0034, 10.1038/msb4100074

AM Feist, 2007, A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information., Mol Syst Biol, 3, 121, 10.1038/msb4100155

A Hoppe, 2007, Including metabolite concentrations into flux balance analysis: Thermodynamic realizability as a constraint on flux distributions in metabolic networks., BMC Syst Biol, 1, 23, 10.1186/1752-0509-1-23

CS Henry, 2007, Thermodynamics-Based Metabolic Flux Analysis., Biophys J, 92, 1792, 10.1529/biophysj.106.093138

Ma Orman, 2012, Metabolic network analysis of perfused livers under fed and fasted states: Incorporating thermodynamic and futile-cycleassociated regulatory constraints., J Theor Biol, 293, 101, 10.1016/j.jtbi.2011.10.019

S Schuster, 1994, On elementary ux modes in biochemical reaction systems at steady state., J Biol Syst, 2, 165, 10.1142/S0218339094000131

S Klamt, 2005, Algorithmic approaches for computing elementary modes in large biochemical reaction networks., Syst Biol (Stevenage), 152, 249, 10.1049/ip-syb:20050035

M Terzer, 2008, Large-scale computation of elementary flux modes with bit pattern trees., Bioinformatics, 24, 2229, 10.1093/bioinformatics/btn401

S Schuster, 1999, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering., Trends Biotechnol, 17, 53, 10.1016/S0167-7799(98)01290-6

NC Duarte, 2004, Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model., Genome Res, 14, 1298, 10.1101/gr.2250904

R Mahadevan, 2003, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models., Metab Eng, 5, 264, 10.1016/j.ymben.2003.09.002

N Zamboni, 2008, anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data., BMC bioinformatics, 9, 199, 10.1186/1471-2105-9-199

L Palmieri, 1999, Identification of the Yeast Mitochondrial Transporter for Oxaloacetate and Sulfate., J Biol Chem, 274, 22184, 10.1074/jbc.274.32.22184

DK Breslow, 2008, A comprehensive strategy enabling high-resolution functional analysis of the yeast genome., Nat Methods, 5, 711, 10.1038/nmeth.1234

ND Price, 2002, Extreme Pathways and Kirchhoff's Second Law., Biophys J, 83, 2879, 10.1016/S0006-3495(02)75297-1

BM Bakker, 2001, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae., FEMS Microbiol Rev, 25, 15, 10.1111/j.1574-6976.2001.tb00570.x

R Schütz, 2007, Systematic evaluation of objective functions for predicting intracellular uxes in Escherichia coli., Mol Syst Biol, 3, 119, 10.1038/msb4100162

R Schütz, 2009, Model-driven identification of operating principles in metabolic networks [Ph.D. thesis]

GN Vemuri, 2007, Increasing NADH oxidation reduces overow metabolism in Saccharomyces cerevisiae., Proc Natl Acad Sci U S A, 104, 2402, 10.1073/pnas.0607469104

M Rigoulet, 2004, Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae., Mol Cell Biochem, 256–257, 73, 10.1023/B:MCBI.0000009888.79484.fd

CAM Marres, 1991, Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae., Eur J Biochem, 195, 857, 10.1111/j.1432-1033.1991.tb15775.x

S Todisco, 2006, Identification of the Mitochondrial NAD+ Transporter in Saccharomyces cerevisiae., J Biol Chem, 281, 1524, 10.1074/jbc.M510425200

G von Jagow, 1970, Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis., Eur J Biochem, 12, 583, 10.1111/j.1432-1033.1970.tb00890.x

MD Jankowski, 2008, Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks., Biophys J, 95, 1487, 10.1529/biophysj.107.124784

X Li, 2010, A Database of Thermodynamic Quantities for the Reactions of Glycolysis and the Tricarboxylic Acid Cycle., J Phys Chem B, 114, 16068, 10.1021/jp911381p

JM Buescher, 2010, Ultrahigh performance liquid chromatographytandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites., Anal Chem, 82, 4403, 10.1021/ac100101d

M Terzer, 2009, Large scale methods to enumerate extreme rays and elementary modes [Ph.D. thesis]

C Kaleta, 2009, Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns., Genome Res, 19, 1872, 10.1101/gr.090639.108

A Kümmel, 2008, Integrating Thermodynamics-based Modeling and Quantitative Experimental Data for Studying Microbial Metabolism [Ph.D. thesis]

SM Fendt, 2010, Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity., Mol Syst Biol, 6, 356, 10.1038/msb.2010.11

JC Ewald, 2010, Unraveling Yeast's Response to its Environment by Novel Metabolomics Approaches [Ph.D. thesis]

M Kunze, 2002, Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium., Eur J Biochem, 269, 915, 10.1046/j.0014-2956.2001.02727.x

WK Huh, 2003, Global analysis of protein localization in budding yeast., Nature, 425, 686, 10.1038/nature02026

LM Blank, 2005, Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts., FEMS Yeast Res, 5, 545, 10.1016/j.femsyr.2004.09.008

H Maaheimo, 2001, Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids., Eur J Biochem, 268, 2464, 10.1046/j.1432-1327.2001.02126.x

L Valenzuela, 1998, Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae., J Bacteriol, 180, 3533, 10.1128/JB.180.14.3533-3540.1998

T Schlösser, 2004, Alanine : glyoxylate aminotransferase of Saccharomyces cerevisiae-encoding gene AGX1 and metabolic significance., Yeast, 21, 63, 10.1002/yea.1058

EK Kastanos, 1997, Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae., Biochemistry, 36, 14956, 10.1021/bi971610n

N Monschau, 2006, Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis., FEMS Microbiol Lett, 150, 55, 10.1111/j.1574-6968.1997.tb10349.x

DA Beard, 2005, Thermodynamic-Based Computational Profiling of Cellular Regulatory Control in Hepatocyte Metabolism., Am J Physiol Endocrinol Metab, 288, 633, 10.1152/ajpendo.00239.2004

C Auesukaree, 2004, Intracellular Phosphate Serves as a Signal for the Regulation of the PHO Pathway in Saccharomyces cerevisiae., J Biol Chem, 279, 17289, 10.1074/jbc.M312202200

Y Takehara, 1995, Oxygen-Dependent Regulation of Mitochondrial Energy Metabolism by Nitric Oxide., Arch Biochem Biophys, 323, 27, 10.1006/abbi.1995.0005

MTAP Kresnowati, 2007, Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse., Biotechnol Bioeng, 97, 86, 10.1002/bit.21179

R Orij, 2009, In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth., Microbiology, 155, 268, 10.1099/mic.0.022038-0

SJ Jol, 2010, Thermodynamic Calculations for Biochemical Transport and Reaction Processes in Metabolic Networks., Biophys J, 99, 3139, 10.1016/j.bpj.2010.09.043