System Identification: New Paradigms, Challenges, and Opportunities

Acta Automatica Sinica - Tập 39 - Trang 933-942 - 2013
Le-Yi WANG1, Wen-Xiao ZHAO2
1Department of Electrical and Computer Engineering Wayne State University Detroit, Michigan 48202 USA
2Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Tài liệu tham khảo

Zadeh, 1956, On the identification problem, IEEE Transactions on Circuits and Systems, 3, 277 Cai, 1989 Guo, 2005 Ljung, 2005, Guest editorial: special issue on system identification, IEEE Transactions on Automatic Control, 50, 1473, 10.1109/TAC.2005.856638 Gevers, 2006, A personal view of the development of system identification: a 30-year journey through an exciting field, IEEE Control Systems Magazine, 26, 93, 10.1109/MCS.2006.252834 Ljung, 2008, Perspectives on system identification, 7172 Ljung, 2011, Four encounters with system identification, European Journal of Control, 17, 449, 10.3166/ejc.17.449-471 Ljung, 1987 Chen, 1991 Ljung, 1977, Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control, 22, 551, 10.1109/TAC.1977.1101561 Chen, 2006, Recursive identification for Wiener model with discontinuous piece-wise linear function, IEEE Transactions on Automatic Control, 51, 390, 10.1109/TAC.2005.864183 Kushner, 2003 Chen, 1986, Stochastic approximation procedures with randomly varying truncations, Science in China, Series A, 29, 914 Chen, 2002 Akaike, 1974, A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716, 10.1109/TAC.1974.1100705 Burnham, 2004, Multimodel inference: understanding AIC and BIC in model selection, Sociological Methods and Research, 33, 261, 10.1177/0049124104268644 Rissanen, 1978, Modeling by shortest data description, Automatica, 14, 465, 10.1016/0005-1098(78)90005-5 Zheng, 1990, Identification of stochastic time lag systems in the presence of colored noise, Automatica, 26, 769, 10.1016/0005-1098(90)90052-J Zheng, 1995, A bias-correction method for indirect identification of closed-loop systems, Automatica, 31, 1019, 10.1016/0005-1098(95)00006-I Soderstrom, 2007, Accuracy analysis of the Frisch scheme for identifying errors-in-variables systems, IEEE Transactions on Automatic Control, 52, 985, 10.1109/TAC.2007.899005 Söderström, 2002, Perspectives on errors-in-variables estimation for dynamic systems, Signal Processing, 82, 1139, 10.1016/S0165-1684(02)00252-9 Forssel, 1999, Closed-loop identification revisited, Automatica, 35, 1215, 10.1016/S0005-1098(99)00022-9 Obinata, 2001 Kalman, 1958, Design of a self-optimising control system, Transactions on ASME, 80, 468 Aström, 1973, On self tuning regulators, Automatica, 9, 185, 10.1016/0005-1098(73)90073-3 Guo, 1995, Convergence and logarithm laws of self-tuning regulators, Automatica, 31, 435, 10.1016/0005-1098(94)00127-5 Durrett, 2010 Zhou, 2004 Milanese, 1982, Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators, IEEE Transactions on Automatic Control, 27, 408, 10.1109/TAC.1982.1102926 Milanese, 1991, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, 27, 997, 10.1016/0005-1098(91)90134-N Mäkilä, 1995, Worst-case control-relevant identification, Automatica, 31, 1799, 10.1016/0005-1098(95)00106-3 Chen, 2000 1994, The modeling of uncertainty in control systems Helmicki, 1991, Control oriented system identification: a worst-case/deterministic approach in H∞, IEEE Transactions on Automatic Control, 36, 1163, 10.1109/9.90229 Gu, 1992, Linear and nonlinear algorithms for identification in H∞, IEEE Transactions on Automatic Control, 37, 953, 10.1109/9.148347 Gu, 1992, A class of algorithms for identification in H∞, Automatica, 28, 299, 10.1016/0005-1098(92)90117-X Chen, 1995, The Caratheodory-Fejer problem and H∞/l1 identification: a time domain approach, IEEE Transactions on Automatic Control, 40, 729, 10.1109/9.376099 Chen, 1995, Worst case system identification in H∞: validation of a priori information, essentially optimal algorithms, and error bounds, IEEE Transactions on Automatic Control, 40, 1260, 10.1109/9.400481 Zhou, 1993, Time domain identification for robust control, Systems and Control Letters, 20, 167, 10.1016/0167-6911(93)90058-E Chen, 1997, Frequency-domain tests for validation of linear fractional uncertain models, IEEE Transactions on Automatic Control, 42, 748, 10.1109/9.587309 Poolla, 1994, A time-domain approach to model validation, IEEE Transactions on Automatic Control, 39, 951, 10.1109/9.284871 Smith, 1992, Model validation: a connection between robust control and identification, IEEE Transactions on Automatic Control, 37, 942, 10.1109/9.148346 Anderson, 1971 Serfling, 1980 Bohlin, 1970, On the maximum likelihood method of identification, IBM Journal of Research and Development, 14, 41, 10.1147/rd.141.0041 Wang, 2000, Uncertainty, information and complexity in identification and control, International Journal of Robust and Nonlinear Control, 10, 857, 10.1002/1099-1239(200009/10)10:11/12<857::AID-RNC529>3.0.CO;2-J Casini, 2007, Time complexity and input design in worst-case identification using binary sensors, 5528 Milanese, 1993, Information-based complexity and nonparametric worst-case system identification, Journal of Complexity, 9, 427, 10.1006/jcom.1993.1028 Wang, 1999, Towards a harmonic blending of deterministic and stochastic frameworks in information processing, Volume 245, 102 Wang, 2000, Persistent identification of systems with unmodeled dynamics and exogenous disturbances, IEEE Transactions on Automatic Control, 45, 1246, 10.1109/9.867017 Dahleh, 1993, The sample complexity of worst-case identification of FIR linear systems, Systems and Control Letters, 20, 157, 10.1016/0167-6911(93)90057-D Chong, 2003, Sensor networks: evolution, opportunities, and challenges, Proceedings of the IEEE, 91, 1247, 10.1109/JPROC.2003.814918 Wang, 2009, Identification of linear dynamic systems operating in a networked environment, Automatica, 45, 2763, 10.1016/j.automatica.2009.09.021 Zhang, 2012, Distributed parameter estimation over unreliable networks with Markovian switching topologies, IEEE Transactions on Automatic Control, 57, 2545, 10.1109/TAC.2012.2188353 Liu, 2003, Wireless communication tradeoffs in distributed control, 688 Yuksel, 2007, Optimal signaling policies for decentralized multicontroller stabilizability over communication channels, IEEE Transactions on Automatic Control, 52, 1969, 10.1109/TAC.2007.904279 Wang, 2003, System identification using binary sensors, IEEE Transactions on Automatic Control, 48, 1892, 10.1109/TAC.2003.819073 Wang, 2010 Wang, 2011, State observability and observers of linear-time-invariant systems under irregular sampling and sensor limitations, IEEE Transactions on Automatic Control, 56, 2639, 10.1109/TAC.2011.2122570 He, 2013, Optimization-based structure identification of dynamical networks, Physica A: Statistical Mechanics and Its Applications, 392, 1038, 10.1016/j.physa.2012.11.014 Zhou, 2010, Causal relationship inference for a large-scale cellular network, Bioinformatics, 26, 2020, 10.1093/bioinformatics/btq325 Wang, 2012, A relative variation-based method to unraveling gene regulatory networks, PLoS ONE, 7, e31194, 10.1371/journal.pone.0031194 Bolouri, 2001 Billings, 1980, Identification of nonlinear systems — a survey, IEE Proceedings D: Control Theory and Applications, 127, 272, 10.1049/ip-d.1980.0047 Sjöberg, 1995, Nonlinear black-box modeling in system identification: a unified overview, Automatica, 31, 1691, 10.1016/0005-1098(95)00120-8 Verhaegen, 1996, Identifying MIMO Wiener systems using subspace model identification methods, Signal Processing, 52, 235, 10.1016/0165-1684(96)00056-4 Bai, 2008, Towards identification of Wiener systems with the least amount of a priori information on the nonlinearity, Automatica, 44, 910, 10.1016/j.automatica.2007.08.001 Bai, 1998, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear system, Automatica, 34, 333, 10.1016/S0005-1098(97)00198-2 Ninness, 2002, Quantifying the accuracy of Hammerstein model estimation, Automatica, 38, 2037, 10.1016/S0005-1098(02)00101-2 Zhu, 2002, Estimation of an N-L-N Hammerstein-Wiener model, Automatica, 38, 1607, 10.1016/S0005-1098(02)00062-6 Bai, 2010, Convergence of the iterative algorithm for a general Hammerstein system identification, Automatica, 46, 1891, 10.1016/j.automatica.2010.07.007 Zhao, 2009, Adaptive tracking and recursive identification for Hammerstein systems, Automatica, 45, 2773, 10.1016/j.automatica.2009.09.009 Zhao, 2012, Identification of Wiener, Hammerstein, and NARX systems as Markov chains with improved estimates for their nonlinearities, Systems and Control Letters, 61, 1175, 10.1016/j.sysconle.2012.08.008 Mu, 2012, Recursive identification of Wiener-Hammerstein systems, SIAM Journal on Control and Optimization, 50, 2621, 10.1137/110826564 Roll, 2005, Nonlinear system identification via direct weight optimization, Automatica, 41, 475, 10.1016/j.automatica.2004.11.010 Zhao, 2007, Identification of Wiener systems with binary-valued output observations, Automatica, 43, 1752, 10.1016/j.automatica.2007.03.006 Wang, 2007, Asymptotically efficient parameter estimation using quantized output observations, Automatica, 43, 1178, 10.1016/j.automatica.2006.12.030 Katayama, 2005 Van Overschee, 1995, A unifying theorem for three subspace system identification algorithms, Automatica, 31, 1853, 10.1016/0005-1098(95)00072-0 Vidal, 2008, Recursive identification of switched ARX systems, Automatica, 44, 2274, 10.1016/j.automatica.2008.01.025 Wang, 2012, Parameter estimation of periodically switched linear systems, IET Control Theory and Applications, 6, 768, 10.1049/iet-cta.2011.0390 Zames, 1994, Fast identification n-widths and uncertainty principles for LTI and slowly varying systems, IEEE Transactions on Automatic Control, 39, 1827, 10.1109/9.317106 Tan, 2006 Sayeed, 2003, A signal modeling framework for integrated design of sensor networks, 7 Vapnik, 1998 Vapnik, 1999 Vidyasagar, 2003 Kolmogorov, 1956, On some asymptotic characteristics of completely bounded spaces, Doklady Akademii Nauk SSSR, 108, 385 Pinkus, 1985 Traub, 1988 Wang, 2008, Space and time complexities and sensor threshold selection in quantized identification, Automatica, 44, 3014, 10.1016/j.automatica.2008.04.022 Lin, 1999, Time complexity and model complexity of fast identification of continuous-time LTI systems, IEEE Transactions on Automatic Control, 44, 1814, 10.1109/9.793721 Poolla, 1994, On the time complexity of worst-case system identification, IEEE Transactions on Automatic Control, 39, 944, 10.1109/9.284870 Tse, 1993, Optimal asymptotic identification under bounded disturbances, IEEE Transactions on Automatic Control, 38, 1176, 10.1109/9.233151 Zames, 1979, On the metric complexity of causal linear systems: ɛ-entropy and ɛ-dimension for continuous time, IEEE Transactions on Automatic Control, 24, 222, 10.1109/TAC.1979.1101976 Cramer, 1946 Frieden, 2004 Hannan, 1988 Cover, 1991 Gallager, 1968 Gersho, 1991 Sayood, 2000 Davis, 1994 Zurek, 1990 Gevers, 1993, Towards a joint design of identification and control?, 111 Ljung, 2000, 1 Garnier H, Gilson M, Laurain V. The CONTSID toolbox for Matlab: Extensions and latest developments. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo, France, 2009. 735–740 Ljung, 2003, Educational aspects of identification software user interfaces, 1590 Rivera, 2003, Plant-friendly system identification: a challenge for the process industries, 917