Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins

Irene S. Khalek1,2,3, R. R. Senji Laxme4,2, Yen Thi Kim Nguyen5, Suyog Khochare4, Rohit N. Patel6, Jordan L. Woehl1,2,3, Jessica Smith1,2,3, Karen L. Saye-Francisco1,2, Y.T. Kim1,2,3, Laetitia Misson Mindrebo1,2,3, Quoc Tran1,2,3, Mateusz Kędzior1,2,3, Evy Boré6, Oliver Limbo1,2,3, Mohit Verma1,2,3, Robyn L. Stanfield5, Stefanie K. Menzies6, Stuart Ainsworth6, Robert A. Harrison6, Dennis R. Burton7,1,2,8, Devin Sok7,1,2,3, Ian A. Wilson5,9, Nicholas R. Casewell6, Kartik Sunagar4, Joseph G. Jardine1,2,3
1Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
2IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.
3IAVI, New York, NY 10004, USA
4Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India.
5Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
6Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
7Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.
8Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
9Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA.

Tóm tắt

Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody–based universal antivenom to treat snakebite envenoming.

Từ khóa


Tài liệu tham khảo

10.1038/nrdp.2017.63

10.1186/s40409-017-0127-6

10.1016/j.toxicon.2018.06.084

10.1371/journal.pntd.0000767

10.3390/toxins8120351

10.2174/1381612822666160623073438

10.1016/j.toxicon.2013.09.010

10.1016/j.toxicon.2018.03.004

10.3389/fimmu.2019.01598

10.1016/j.tips.2020.05.006

10.1016/j.tree.2012.10.020

C. Xie, L.-O. Albulescu, M. A. Bittenbinder, G. W. Somsen, F. J. Vonk, N. R. Casewell, J. Kool, Neutralizing effects of small molecule inhibitors and metal chelators on coagulopathic viperinae snake venom toxins. Biomedicine 8, 297 (2020).

10.3390/toxins13040254

10.3390/toxins5112172

10.1016/j.toxicon.2010.07.010

10.1016/j.bcp.2020.114168

10.3390/toxins10120534

10.3389/fimmu.2020.00655

10.3390/toxins6051526

10.1038/s41467-018-06086-4

10.1371/journal.pone.0151363

10.1016/j.actatropica.2017.09.001

10.1038/s41467-023-36393-4

10.1590/1678-9199-jvatitd-2020-0056

10.1016/j.toxicon.2019.10.006

10.1371/journal.pgen.1005596

10.1126/science.1187659

10.1038/nature10373

10.1073/pnas.1415789111

10.1126/science.1178746

10.1073/pnas.2216612120

10.1126/scisignal.abk3516

10.1073/pnas.170297297

10.1016/j.jprot.2021.104256

10.1016/j.jprot.2015.02.002

10.1016/j.ijbiomac.2023.126708

10.1016/j.neuron.2020.03.012

10.1038/nn1942

10.1073/pnas.042699899

10.1038/ncomms4614

10.1073/pnas.1208984109

10.1016/j.coviro.2019.02.004

10.1016/S0896-6273(01)00461-5

10.1186/s12859-015-0611-3

10.1101/gr.849004

10.1080/19420862.2017.1406570

10.1093/protein/gzt047

10.1080/19420862.2017.1356528

Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data (available at http://bioinformatics.babraham.ac.uk/projects/fastqc/).

10.1371/journal.pone.0185056

10.7717/peerj.2584

10.1002/pro.4205

10.7554/eLife.23043

10.1016/j.bcp.2023.115758

10.1126/science.abb9303

10.1016/j.jprot.2017.08.016

10.3390/toxins13010069

10.1016/j.jprot.2018.09.019

10.1038/nn.2908

10.1093/bioinformatics/btp324

10.1093/bioinformatics/btp352

World Health Organization WHO expert committee on biological standardization: Sixty-seventh report (World Health Organization Genève Switzerland 2017).

D. J. Finney in Probit Analysis: A Statistical Treatment of the sigmoid Response Curve (Cambridge Univ. Press 1971).

10.3390/toxins12090528

Z. Otwinowski W. Minor in Methods in Enzymology (Academic Press 1997) vol. 276 pp. 307–326.

10.1039/C9ME00020H

10.1107/S0021889807021206

10.1107/S0907444904019079

10.1107/S0907444902016657

10.1107/S0907444904019158

10.1107/S0907444909042073

10.1107/S0021889809008784

10.1016/j.molimm.2008.05.022

10.1016/j.jmb.2007.05.022