Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes

Fuel Cells - Tập 5 Số 2 - Trang 171-186 - 2005
Yuan Yang1, Steven Holdcroft2
1Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6, Canada
2Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC, Canada, V6T 1W5, Canada

Tóm tắt

AbstractThe nanostructure and morphology of proton conducting polymers is of considerable interest in the search for next generation materials and optimization of existing ones. Synthetic methodologies for tailoring molecular structures that promote nanoscopic phase separation of ionic and non‐ionic domains, and the effect of phase separation on parameters such as proton conductivity, are considered. Rather than distinguish proton conducting polymers according to chemical class, they are categorized under sub‐headings of random, block, and graft copolymers. The synthetic methodology available to access archetypal polymer structures is dependent on the nature of the monomers and restrictive compared to conventional non‐ionic polymer systems. Irrespective of the methodology, ionic aggregation and phase separation are consistently found to play an important role in the proton conductivity of low ion exchange capacity (IEC) membranes, but less of a role in highIECmembranes. Significant research is required to further develop relationships between polymer architecture, morphology, and electrolytic properties.

Từ khóa


Tài liệu tham khảo

A. Eisenberg H. L. Yeager (Eds.) Perfluorinated Ionomer membrane ACS Symposium Series 180 American Chemical Society Washington D.C.1982.

10.1002/pol.1981.180191103

10.1021/ma50006a032

10.1021/ma00229a028

10.1080/07366578608081976

Orfino F. P., 2000, J. New. Mat. Electrochem. Systems, 3, 287

10.1002/pol.1981.180190101

10.1021/cm950506u

10.1039/ft9969200663

10.1021/ma00101a012

10.1016/S0376-7388(00)00632-3

10.1021/ma961830t

10.1016/S0376-7388(97)00253-6

10.1016/S0376-7388(97)00254-8

10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R

10.1016/S0167-2738(01)00912-2

10.1016/S0360-3199(97)00113-4

Bauer B., 2000, J. New. Mat. Electrochem. Systems, 3, 93

10.1016/S0376-7388(00)00635-9

10.1002/1521-3927(20021001)23:15<896::AID-MARC896>3.0.CO;2-P

10.1021/ma0019959

10.1002/pola.1303

10.1002/pola.10032

10.1002/pola.1304

10.1016/S0014-3057(02)00238-0

Zhang Y., 1999, Polym. Prepr., 480

Zhang Y., 2000, Polym. Prepr., 1561

10.1016/S0032-3861(03)00439-7

10.1002/pola.11026

10.1016/S0376-7388(98)00282-8

10.1002/1097-4628(20010103)79:1<49::AID-APP60>3.0.CO;2-J

10.1016/S0376-7388(01)00702-5

10.1021/ma0116295

10.1002/(SICI)1099-0518(19960730)34:10<1873::AID-POLA4>3.0.CO;2-Q

10.1002/1097-0126(200012)49:12<1572::AID-PI545>3.0.CO;2-X

10.1149/1.1391198

10.1149/1.1383072

Bonnet B., 2000, J. New. Mat. Electrochem. Systems, 3, 87

10.1016/S0032-3861(00)00353-0

10.1002/pola.10821

10.1016/S0013-4686(00)00762-3

10.1016/S0376-7388(03)00127-3

10.1016/S0376-7388(00)00633-5

10.1149/1.1630037

Savadogo O., 1998, J. New. Mat. Electrochem. Systems, 1, 47

10.1016/S0079-6700(00)00032-0

10.1016/S0376-7388(00)00631-1

10.1016/S0376-7388(00)00635-9

10.1021/cm0310519

10.1146/annurev.matsci.33.022702.154702

10.1146/annurev.matsci.33.022702.155349

10.1146/annurev.matsci.33.022702.155102

10.1146/annurev.matsci.33.022702.154657

10.1016/S1359-0294(03)00006-2

10.1002/pol.1985.170230426

10.1021/ma00143a014

M. Chanda Advanced Polymer Chemistry: A Problem Solving Guide Marcel Dekker Inc. New York 2000 p. 7.

H. A. J. Battaerd G. W. Tregear Graft Copolymers John Wiley & Sons Inc. New York 1967 p. 117.

I. W. Hamley The Physics of Block Copolymers Oxford University Press Oxford 1998.

A. Noshay J. E. McGrath Block Copolymers: Overview and Critical Survey Academic Press Inc New York 1977 p. 12.

10.1021/ma00130a012

10.1002/polb.1070

10.1002/macp.200390022

10.1021/ma00086a057

10.1021/ma951696x

10.1021/ma00073a042

10.1063/1.472113

10.1063/1.474266

10.1021/ma00199a006

10.1016/S0032-3861(00)00596-6

10.1021/ma980103q

10.1016/S0032-3861(99)00112-3

10.1021/ma971349i

10.1021/ma9617072

10.1002/1521-3900(200110)175:1<387::AID-MASY387>3.0.CO;2-1

10.1016/S0376-7388(01)00620-2

10.1002/pola.10755

10.1002/polb.10496

10.1016/S0032-3861(03)00580-9

Harrison W., 2002, Polym. Prepr., 700

Encyclopedia of Polymer Science and Technology Vol. 2(Eds. J. I. Kroschwitz et al.) John Wiley & Sons New York 1985 p. 324.

10.1021/ma00187a007

10.1016/0014-3057(84)90053-3

10.1002/macp.1994.021950417

Li K., 1996, J. Appl. Polym. Sci., 1607

10.1021/ma00195a005

10.1002/(SICI)1099-0488(19960930)34:13<2177::AID-POLB7>3.0.CO;2-T

10.1007/BF00318065

10.1016/j.eurpolymj.2003.10.015

10.1021/ma035659e

Kerres J., 2000, J. New. Mat. Electrochem. Systems, 3, 229

10.1021/ma034965p

Cornet N., 2000, J. New. Mat. Electrochem. Systems, 3, 33

10.1016/0376-7388(96)00155-X

S. Faure N. Cornet G. Gebel R. Mercier M. Pineri B. Sillion Proceeding of the Second International Symposium On New Materials For Fuel Cells and Modern Battery Systems (Eds. O. Savadogo P. R. Roberge) Montreal Canada 1997 p. 818.

10.1016/S1383-5866(00)00184-2

10.1016/S0376-7388(03)00315-6

10.1016/S0032-3861(00)00384-0

10.1021/ma020260w

S. G.Ehrenberg J. M.Serpico G. E.Wnek J. N.Rider Fuel cell incorporating novel ion‐conducting membranes US Patent 5 468 574 1995.

S. G.Ehrenberg J. M.Serpico G. E.Wnek J. N.Rider Fuel cell incorporating novel ion‐conducting membrane US Patent 5 679 482 1997.

S. G. Ehrenberg J. M. Serpico B. M. Sheikh‐Ali T. N. Tangredi E. Zador G. E. Wnek Proceeding of the Second International Symposium On New Materials For Fuel Cells and Modern Battery Systems (Eds. O. Savadogo P. R. Roberge) Montreal Canada 1997 p. 828.

Wnek G. E., 1998, Polym. Prepr., 54

10.1016/S0022-0728(01)00355-2

10.1016/S0376-7388(02)00138-2

10.1002/1521-3927(20020901)23:13<753::AID-MARC753>3.0.CO;2-G

10.1016/S0376-7388(02)00555-0

10.1002/masy.200351408

10.1016/0032-3861(91)90378-V

10.1021/ma034014b

10.1126/science.251.4996.887

10.1021/ja00125a035

10.1021/ma00127a042

K. Matyjaszewski Controlled Radical Polymerization ACS Symposium Series 685 American Chemical Society Washington D.C. 1998.

10.1021/cr940534g

10.1016/S0032-3861(98)00259-6

10.1021/ma9918351

10.1021/ma030035u

Z. Shi S. Holdcroft Morphology and Conductivity of Proton Exchange Membranes Containing Fluorine Block Copolymers CSC 2002 Conference Vancouver BC Canada 2002.

Z. Shi S. Holdcroft Morphology and Electrochemical Properties of Proton Exchange Membranes Containing Fluorine Block Copolymers the 200thMeeting of the Electrochemical Society San Francisco CA USA 2001.

Z. Shi S. Holdcroft Morphology and Conductivity of Fluorinated Ion‐containing Block Copolymers 2003 Gordon Research Conference: Ion‐containing Polymers Division Mount Holyoke College MA USA 2003.

10.1016/S0032-3861(01)00267-1

10.1002/app.10027

10.1016/0013-4686(94)00274-5

10.1149/1.2048683

10.1002/polb.10217

10.1002/pola.1281

10.1023/A:1014222132075

10.1039/b006735k

10.1002/(SICI)1099-0518(19990615)37:12<1741::AID-POLA3>3.0.CO;2-5

10.1016/S0014-3057(02)00031-9

10.1002/pat.202

10.1149/1.1394085

10.1021/ma010970m

10.1021/cm010144s

10.1002/1616-3028(20020517)12:5<389::AID-ADFM389>3.0.CO;2-5

10.1071/CH02084

10.1149/1.1561632