Synthesis of a Heparan Sulfate Mimetic Library Targeting FGF and VEGF via Click Chemistry on a Monosaccharide Template

ChemMedChem - Tập 7 Số 7 - Trang 1267-1275 - 2012
Ligong Liu1,2, Caiping Li1, Siska Cochran1, Shane Jimmink1, Vito Ferro1,3
1Drug Design Group, Progen Pharmaceuticals Limited, 2806 Ipswich Road, Darra, QLD 4076 (Australia)
2Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
3School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia

Tóm tắt

AbstractA disulfated methyl 6‐azido‐6‐deoxy‐α‐D‐mannopyranoside template was used as a core structure for binding to the angiogenic growth factors FGF‐1, FGF‐2, and VEGF. The core structure was diversified in a rapid, parallel manner by employing the CuI‐catalyzed Huisgen azide–alkyne cycloaddition (“click”) reaction. The diversity was further extended by incorporating a Swern oxidation–Wittig reaction sequence on a click adduct of propargyl alcohol. Thus, the sulfated core was linked by various spacers to selected hydrophobic or polar motifs, which were designed to probe the protein surface surrounding the cationic heparan sulfate binding sites of the growth factors in order to improve affinity and selectivity. The affinities of the compounds for the growth factors were measured by surface plasmon resonance solution affinity assays. A lead compound was identified with micromolar binding affinity toward both FGF‐1 and VEGF (Kd=84 and 49 μM, respectively) and good selectivity over FGF‐2 (29‐ and 51‐fold, respectively).

Từ khóa


Tài liệu tham khảo

For reviews see:

10.1016/S0065-2318(01)57017-1

10.1039/b100916h

10.1002/1521-3757(20020201)114:3<426::AID-ANGE426>3.0.CO;2-Q

10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B

For reviews see:

10.1042/BST0340442

10.1158/1535-7163.MCT-06-0082

10.1038/nrc842

10.1038/nri1918

10.1002/med.1026

10.2174/156800909789057006

10.1038/nrc2403

 

10.1517/13543784.2010.524204

10.2174/138945007779940089

10.1517/13543784.11.10.1447

Alessi P., 2009, Eur. Cytokine Network, 20, 225, 10.1684/ecn.2009.0175

 

10.1021/bi020118n

10.1093/jnci/83.10.716

10.1021/jm000089j

10.1124/mol.56.1.204

10.1002/jcp.10136

10.1073/pnas.90.23.11227

10.1016/S0968-0896(00)00317-5

10.1016/S0960-894X(02)00700-X

 

10.1016/S0968-0896(98)00052-2

Firsching A., 1995, Cancer Res., 55, 4957

10.2174/1381612003398528

Schneider G. P., 2002, Clin. Cancer Res., 8, 3955

 

10.1016/S0968-0896(00)00269-8

10.1016/S0968-0896(00)00268-6

10.1016/j.actbio.2005.04.004

10.1002/qsar.200420100

 

10.1016/S0968-0896(99)00113-3

10.1002/chem.201000987

 

10.1016/j.drudis.2010.10.009

El‐Sheikh A., 2002, Cancer Res., 62, 7118

 

10.1074/jbc.M410769200

10.1002/cbic.200500089

10.1016/j.bmcl.2004.02.017

For reviews see:

10.1021/cr0783479

10.1016/S1359-6446(03)02933-7

10.1002/ejoc.200500483

10.1016/j.tet.2010.10.001

10.1016/S0968-0896(02)00064-0

10.1021/jm030447t

R. H. Don V. Ferro I. Bytheway S. Cochran J. K. Fairweather E. T. Hammond T. Karoli C. P. Li L. Liu Glycosaminoglycan (GAG) mimetics PCT Int. Appl. WO2005061523‐A1 2005.

10.1002/ejoc.200300617

 

Panchadhayee R., 2010, Synlett, 1193

10.1016/j.tetlet.2009.03.194

10.1016/S0040-4039(00)00877-7

10.2174/157017809789869456

10.1016/0040-4020(81)85035-1

 

10.1002/ange.19770890704

10.1002/anie.197704233

Valentine D. H., 2003, Synthesis, 317

 

10.1021/jm030180y

10.1007/s10719-008-9210-0

10.1038/31741

10.1016/S0223-5234(02)01347-8