Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics

Theresa Höfurthner1,2, Giorgia Toscano3, Georg Kontaxis4, Andreas Beier2, Moriz Mayer5, Leonhard Geist5, Darryl B. McConnell5, Harald Weinstabl5, Roman Lichtenecker3, Robert Konrat4
1Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
2Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna, Austria
3Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Vienna, Austria
4Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna, Austria
5Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria

Tóm tắt

Abstract

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C−1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.

Từ khóa


Tài liệu tham khảo

Cardillo R, Fuganti C, Ghiringhelli D, Grasselli P, Gatti G (1977) Pattern of incorporation of leucine samples asymmetrically labelled with 13 C in the isopropyl unit into the C5-isoprenoid units of echinuline and flavoglaucine. J Chem Soc Chem Commun. https://doi.org/10.1039/c39770000474

Dalvit C, Pevarello P, Tatò M, Veronesi M, Vulpetti A, Sundström M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68. https://doi.org/10.1023/a:1008354229396

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

Gardner KH, Kay LE (1997) Production and incorporation of 15 N, 13 C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119(32):7599–7600. https://doi.org/10.1021/ja9706514

Goddard TD, Kneller DG (2006) Sparky—NMR assignment and integration software. University of California, California

Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc 97:82–125. https://doi.org/10.1016/j.pnmrs.2016.09.001

Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, Leu, Ile (delta 1) methyl-protonated 15 N-, 13 C-, 2H-labeled proteins. J Biomol NMR 13(4):369–374. https://doi.org/10.1023/a:1008393201236

Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure 30:6–14. https://doi.org/10.1016/j.str.2021.09.009

Grzesiek S, Bax A (1993) The importance of not saturating water in protein NMR: application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594. https://doi.org/10.1021/ja00079a052

Grzesiek S, Bax A (1995) Spin-locked multiple quantum coherence for signal enhancement in heteronuclear multidimensional NMR experiments. J Biomol NMR 6:335–339. https://doi.org/10.1007/BF00197815

Grzesiek S, Kuboniwa H, Bax A, Hinck AP (1995) Multiple-quantum line narrowing for measurement of Hα—HβJ couplings in isotopically enriched proteins. J Am Chem Soc 117:5312–5315. https://doi.org/10.1021/ja00124a014

Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing 13 C-Labeled methyl groups. J Am Chem Soc 122:7898–7904. https://doi.org/10.1021/ja000350l

Harner MJ, Mueller L, Robbins KJ, Reily MD (2017) NMR in drug design. Arch Biochem Biophys 628:132–147. https://doi.org/10.1016/j.abb.2017.06.005

Hu J, Pan D, Li G, Chen K, Hu X (2022) Regulation of programmed cell death by Brd4. Cell Death Dis 13:1059. https://doi.org/10.1038/s41419-022-05505-1

Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310–5324. https://doi.org/10.1002/anie.200301739

Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665. https://doi.org/10.1021/ja00052a088

Lichtenecker RJ, Coudevylle N, Konrat R, Schmid W (2013) Selective isotope labelling of leucine residues by using α-Ketoacid precursor compounds. ChemBioChem 14:818–821. https://doi.org/10.1002/cbic.201200737

Lichtenecker RJ, Weinhäupl K, Reuther L, Schörghuber J, Schmid W, Konrat R (2013) Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems. J Biomol NMR 57:205–209. https://doi.org/10.1007/s10858-013-9786-y

Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020) Drug screening in human cells by NMR spectroscopy allows the early assessment of drug potency. Angew Chem Int Ed 59:6535–6539. https://doi.org/10.1002/anie.201913436

Marino JP, Diener JL, Moore PB, Griesinger C (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly 13 C-labeled RNA. J Am Chem Soc 119:7361–7366. https://doi.org/10.1021/ja964379u

Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75. https://doi.org/10.1023/A:1011254402785

Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117. https://doi.org/10.1021/ja0100120

Miclet E, Williams DC Jr, Clore GM, Bryce DL, Boisbouvier J, Bax A (2004) Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids. J Am Chem Soc 126(34):10560–10570. https://doi.org/10.1021/ja047904v

Palmer AG, Cavanagh J, Byrd RA, Rance M (1992) Sensitivity improvement in three-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 96:416–424. https://doi.org/10.1016/0022-2364(92)90097-Q

Platzer G, Mayer M, Beier A, Brüschweiler S, Fuchs JE, Engelhardt H, Geist L, Bader G, Schörghuber J, Lichtenecker R, Wolkerstorfer B, Kessler D, McConnell DB, Konrat R (2020) PI by NMR: probing CH–π interactions in protein–ligand complexes by NMR spectroscopy. Angew Chem Int Ed 59:14861–14868. https://doi.org/10.1002/anie.202003732

Pople JA (1956) Proton magnetic resonance of hydrocarbons. J Chem Phys 24:1111–1111

Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672. https://doi.org/10.1038/nrd1467

RStudio T (2020) RStudio: integrated development for R. Rstudio Team, Boston

Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13 C,1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135. https://doi.org/10.1007/s10858-010-9449-1

Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sörensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306. https://doi.org/10.1007/BF00175254

Schörghuber J, Geist L, Bisaccia M, Weber F, Konrat R, Lichtenecker RJ (2017) Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds. J Biomol NMR 69:13–22. https://doi.org/10.1007/s10858-017-0129-2

Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science (80-) 274:1531–1534. https://doi.org/10.1126/science.274.5292.1531

Tugarinov V, Kay LE (2013) Estimating side-chain order in [U-2H;13CH 3]-labeled high molecular weight proteins from analysis of HMQC/HSQC spectra. J Phys Chem B 117:3571–3577. https://doi.org/10.1021/jp401088c

Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13 C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. https://doi.org/10.1021/ja030153x

Tugarinov V, Sprangers R, Kay LE (2004) Line narrowing in methyl-TROSY using zero-quantum 1H-13 C NMR spectroscopy. J Am Chem Soc 126:4921–4925. https://doi.org/10.1021/ja039732s

Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696. https://doi.org/10.1002/prot.20449

Vuister GW, Bax A (1992) Resolution enhancement and spectral editing of uniformly 13 C-enriched proteins by homonuclear broadband 13 C decoupling. J Magn Reson 98:428–435. https://doi.org/10.1016/0022-2364(92)90144-V

Werkhoven TM, van Nispen R, Lugtenburg J (1999) Spcific isotope enrichment of methyl methacrylate. Eur J Org Chem 11:2909–2914

Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001