Synthesis of Gold NPs-Containing Thin Films from Metal Salt Injection in Ar or Ar–NH3 DBDs

Plasma Chemistry and Plasma Processing - Tập 43 - Trang 1749-1772 - 2023
Alexandre Perdrau1,2, Noémi Barros1,2, Rocío Rincón1,3, Hervé Glénat1, Stéphanie Truong4, Sarra Gam Derouich4, Xiaonan Sun4, Philippe Decorse4, Sophie Nowak4, Béatrice Plujat1,2, Souad Ammar4, Jean-Pascal Borra5, Fiorenza Fanelli6, Françoise Massines1
1Laboratoire Procédés Matériaux et Énergie Solaire (PROMES, CNRS), Perpignan, France
2Université Perpignan Via Domitia (UPVD), Perpignan, France
3Laboratory of Innovation in Plasmas (LIPs), Universidad de Córdoba, Córdoba, Spain
4Laboratoire Interface Traitement Organisation et Dynamique des Systèmes (ITODYS), CNRS, UMR-7086, Université Paris Cité, Paris, France
5Laboratoire de Physique des Gaz et des Plasmas, (LPGP CNRS-Université Paris-Saclay), UMR-8578, Université Paris-Saclay, Orsay Cedex, France
6Institute of Nanotechnology (NANOTEC), National Research Council (CNR), Bari, Italy

Tóm tắt

This study focuses on metal/polymer nanocomposite thin films made by atmospheric pressure Plasma-Enhanced Chemical Vapor Deposition. The aerosol of isopropanol-dissolved tetrachloroauric acid (HAuCl4:3H2O gold salt) is injected in a dielectric barrier discharge to synthesize plasmonic nanocomposite thin films. Argon is used as carrier gas with or without 133 ppm addition of ammonia (NH3) to respectively get or not a Penning mixture. Results show that NH3 largely influences the salt reduction and thin film properties. According to the aerosol characterization, the size distribution at the plasma entrance supports that isopropanol mainly evaporates before injection in the plasma. The salt initially dissolved in each droplet precipitates during evaporation before injection as solid nanoparticles of about 30 nm diameter with eventual traces of solvent. Then, the nanocomposite thins film are studied. Optical properties, as plasmonic resonance, are characterized by UV–visible absorption spectroscopy. The chemical composition is analyzed using X-ray photoelectron spectroscopy and Raman spectroscopy, complemented by X-ray diffraction analysis as well as chemical mapping obtained by Energy dispersive spectroscopy coupled to scanning electron microscopy (SEM) operating in Scanning Transmission Electron Microscopy mode. Additionally, the morphology of the deposits is investigated by atomic force microscopy and SEM, highlighting the influence of NH3 gas on the film nature and therefore its role in the overall deposition process. Finally, optical emission spectroscopy of the plasma gives clue to better understand the effect of NH3. The overall results show that the salt nanoparticles are reduced in the plasma phase leading to non-aggregated metal Au NPs embedded in a carbon-based matrix formed by isopropanol polymerization. The presence of NH3 in the plasma unambiguously decreases the salt reduction and affects the thin film properties, consequently changing their plasmonic response related to the size, concentration, and composition of the embedded NPs.

Tài liệu tham khảo

Kogelschatz U, Dielectric-barrier discharges: their history, discharge physics, and industrial applications Klages C-P, Hopfner K, Klake N, Thyen R (2001) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym Sakoda T, Sung Y-M, Matsukuma K (2006) Plasma treatment on electrode surfaces of bifacial silicon solar cells. Sol Energy Mater Sol Cells 90(7–8):1089–1097. https://doi.org/10.1016/j.solmat.2005.06.008 Lelièvre J et al (2019) Efficient silicon nitride SiNx: H antireflective and passivation layers deposited by atmospheric pressure PECVD for silicon solar cells. Prog Photovolt Res Appl 27(11):1007–1019. https://doi.org/10.1002/pip.3141 Fanelli F, Fracassi F (2016) Thin film deposition on open-cell foams by atmospheric pressure dielectric barrier discharges. Plasma Processes Polym 13(4):470–479. https://doi.org/10.1002/ppap.201500150 Starostin SA, Creatore M, Bouwstra JB, van de Sanden MCM, de Vries HW (2015) Towards roll-to-roll deposition of high quality moisture barrier films on polymers by atmospheric pressure plasma assisted process: towards roll-to-roll deposition of high quality moisture barrier films on polymers by atmospheric pressure plasma assisted process. Plasma Process Polym 12(6):545–554. https://doi.org/10.1002/ppap.201400194 Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N (2012) Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition. Plasma Processes Polym 9(11–12):1041–1073. https://doi.org/10.1002/ppap.201200029 Raizer YP (1991) Gas discharge physics, 2nd éd. Springer, Berlin Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26(5):053001. https://doi.org/10.1088/1361-6595/aa6426 Massines F, Gherardi N, Naudé N, Ségur P (2009) Recent advances in the understanding of homogeneous dielectric barrier discharges. Eur Phys J Appl Phys 47(2):22805. https://doi.org/10.1051/epjap/2009064 Osawa N, Yoshioka Y (2012) Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure. IEEE Trans Plasma Sci 40(1):2–8. https://doi.org/10.1109/TPS.2011.2172634 Bazinette R, Subileau R, Paillol J, Massines F (2014) Identification of the different diffuse dielectric barrier discharges obtained between 50 kHz to 9 MHz in Ar/NH3at atmospheric pressure. Plasma Sources Sci Technol 23(3):035008. https://doi.org/10.1088/0963-0252/23/3/035008 Magnan R, Hagelaar G, Chaker M, Massines F (2021) Atmospheric pressure dual RF–LF frequency discharge: transition from α to α – γ -mode. Plasma Sources Sci Technol 30(1):015010. https://doi.org/10.1088/1361-6595/abd2ce Fanelli F, Mastrangelo AM, Fracassi F (2014) Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films. Langmuir 30(3):857–865. https://doi.org/10.1021/la404755n Kandola BK (2001) Nanocomposites. In: Fire retardant materials, Elsevier, pp 204–219. https://doi.org/10.1533/9781855737464.204 Sampaio WRV, Serra PLC, Dantas NO, de Sousa RRM, Silva ACA (2022) Nanocomposites thin films: manufacturing and applications. In: Sharma A (ed) Nanocomposite materials for biomedical and energy storage applications. Rijeka: IntechOpen, p. Ch. 4. https://doi.org/10.5772/intechopen.103961 Garcia MA (2012) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D: Appl Phys 45(38):389501. https://doi.org/10.1088/0022-3727/45/38/389501 Trügler A (2016) Optical properties of metallic nanoparticles, vol 232. In: Springer series in materials science, vol 232. Cham: Springer. https://doi.org/10.1007/978-3-319-25074-8. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29(20):203002. https://doi.org/10.1088/1361-648X/aa60f3 Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/jp026731y Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9(3):205–213. https://doi.org/10.1038/nmat2629 Profili J, Levasseur O, Blaisot J-B, Koronai A, Stafford L, Gherardi N (2016) Nebulization of nanocolloidal suspensions for the growth of nanocomposite coatings in dielectric barrier discharges: nebulization of nanocolloidal suspensions…. Plasma Process Polym 13(10):981–989. https://doi.org/10.1002/ppap.201500223 Brunet P, Rincón R, Matouk Z, Chaker M, Massines F (2018) Tailored waveform of dielectric barrier discharge to control composite thin film morphology. Langmuir 34(5):1865–1872. https://doi.org/10.1021/acs.langmuir.7b03563 Uricchio A, Nadal E, Plujat B, Plantard G, Massines F, Fanelli F (2021) Low-temperature atmospheric pressure plasma deposition of TiO2-based nanocomposite coatings on open-cell polymer foams for photocatalytic water treatment. Appl Surf Sci 561:150014. https://doi.org/10.1016/j.apsusc.2021.150014 Profili J, Levasseur O, Naudé N, Chaneac C, Stafford L, Gherardi N (2016) Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge. J Appl Phys 120(5):053302. https://doi.org/10.1063/1.4959994 Nadal E, Milaniak N, Glenat H, Laroche G, Massines F (2021) A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma. Nanotechnology 32(17):175601. https://doi.org/10.1088/1361-6528/abdd60 Porel S, Venkatram N, Narayana Rao D, Radhakrishnan TP (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J Nanosci Nanotechnol 7(6):1887–1892. https://doi.org/10.1166/jnn.2007.736 Brunet P et al (2017) Control of composite thin film made in an Ar/isopropanol/TiO2 nanoparticles dielectric barrier discharge by the excitation frequency. Plasma Process Polym 14(12):1700049. https://doi.org/10.1002/ppap.201700049 Jidenko N, Jimenez C, Massines F, Borra J-P (2007) Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition. J Phys D: Appl Phys 40(14):4155–4163. https://doi.org/10.1088/0022-3727/40/14/009 Vallade J, Bazinette R, Gaudy L, Massines F (2014) Effect of glow DBD modulation on gas and thin film chemical composition: case of Ar/SiH4 /NH3 mixture. J Phys D: Appl Phys 47(22):224006. https://doi.org/10.1088/0022-3727/47/22/224006 Milaniak N, Laroche G, Massines F (2021) Atmospheric-pressure plasma-enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles. Plasma Process Polym 18(2):2000153. https://doi.org/10.1002/ppap.202000153 Bazinette R, Sadeghi N, Massines F (2020) Dual frequency DBD: influence of the amplitude and the frequency of applied voltages on glow, Townsend and radiofrequency DBDs. Plasma Sources Sci Technol 29(9):095010. https://doi.org/10.1088/1361-6595/ab8686 Haynes WM, éd (2014) Handbook of chemistry and physics, 0 éd. CRC Press. https://doi.org/10.1201/b17118 Toivo MJH-S, Kodas T (1999) Aerosol processing of materials. J Am Chem Soc. https://doi.org/10.1021/ja995709o Kwon NK, Lee TK, Kwak SK, Kim SY (2017) Aggregation-driven controllable plasmonic transition of silica-coated gold nanoparticles with temperature-dependent polymer-nanoparticle interactions for potential applications in optoelectronic devices. ACS Appl Mater Interfaces 9(45):39688–39698. https://doi.org/10.1021/acsami.7b13123 Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102(4):425. https://doi.org/10.6028/jres.102.030 Whitehouse DJ (2002) Handbook of surface and nanometrology, 0 éd. Taylor & Francis. https://doi.org/10.1201/9781420034196 Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111(28):10226–10232. https://doi.org/10.1021/jp0719715 Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf Interface Anal 38(4):215–218. https://doi.org/10.1002/sia.2180 Thomas TD, Weightman P (1986) Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys Rev B 33(8):5406–5413. https://doi.org/10.1103/PhysRevB.33.5406 Galtayries A, Laksono E, Siffre J-M, Argile C, Marcus P (2000) XPS study of the adsorption of NH3 on nickel oxide on Ni(111). Surf Interface Anal 30(1):140–144. https://doi.org/10.1002/1096-9918(200008)30:1%3c140::AID-SIA820%3e3.0.CO;2-5 Li Z, Deng L, Kinloch IA, Young RJ (2023) Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibres. Prog Mater Sci 135:101089. https://doi.org/10.1016/j.pmatsci.2023.101089 Chan MY, Leng W, Vikesland PJ (2018) Surface-enhanced Raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19(1):24–28. https://doi.org/10.1002/cphc.201700798 Murphy PJ, LaGrange MS (1998) Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration. Geochim Cosmochim Acta 62(21–22):3515–3526. https://doi.org/10.1016/S0016-7037(98)00246-4 Bazinette R, Paillol J, Massines F (2015) Optical emission spectroscopy of glow, Townsend-like and radiofrequency DBDs in an Ar/NH 3 mixture. Plasma Sources Sci Technol 24(5):055021. https://doi.org/10.1088/0963-0252/24/5/055021 Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961. https://doi.org/10.1021/cr200061k Pal B, Sen PK, Sen Gupta KK (2001) Reactivity of alkanols and aryl alcohols towards tetrachloroaurate(III) in sodium acetate-acetic acid buffer medium. J Phys Org Chem 14(5):284–294. https://doi.org/10.1002/poc.361 Robert R, Hagelaar G, Sadeghi N, Magnan R, Stafford L, Massines F (2022) Role of excimer formation and induced photoemission on the Ar metastable kinetics in atmospheric pressure Ar–NH 3 dielectric barrier discharges. Plasma Sources Sci Technol 31(6):065010. https://doi.org/10.1088/1361-6595/ac7748 Vasudevan A et al (2022) From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold. J Alloys Compd 928:167155. https://doi.org/10.1016/j.jallcom.2022.167155 Nitta K, Shimizu Y, Terashima K, Ito T (2021) Plasma-assisted synthesis of size-controlled monodisperse submicron gold particles using inkjet droplets. J Phys D: Appl Phys 54(33):33LT01. https://doi.org/10.1088/1361-6463/ac02f8 Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22(11):1257–1265. https://doi.org/10.1039/a804445g Grzelczak M, Liz-Marzán LM (2014) The relevance of light in the formation of colloidal metal nanoparticles. Chem Soc Rev 43(7):2089–2097. https://doi.org/10.1039/C3CS60256G Delannoy L, El Hassan N, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110(45):22471–22478. https://doi.org/10.1021/jp062130l Somodi F et al (2008) Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation. Appl Catal A 347(2):216–222. https://doi.org/10.1016/j.apcata.2008.06.017