Tổng hợp và hoạt tính sinh học của các dẫn xuất indole dựa trên sulfonamide mới được thiết kế làm tác nhân kháng khuẩn

Future Journal of Pharmaceutical Sciences - Tập 9 - Trang 1-9 - 2023
Khushbu Agrawal1, Tarun Patel1, Rajeshree Patel1
1Department of Chemistry, Kadi Sarva Vishwavidyalaya, Gandhinagar, India

Tóm tắt

Trong hóa học dược phẩm, indole và các dẫn xuất của nó đóng một vai trò quan trọng. Indole đang ngày càng được chú trọng trong hóa học dược phẩm do hoạt tính sinh lý của nó, bao gồm các hoạt động như chống ung thư, chống lao, kháng vi sinh, kháng virus, chống sốt rét, chống viêm, tác nhân chống leishmania, chống cholinesterase và ức chế enzyme. Sự gia tăng kháng kháng sinh đang trở thành một mối đe dọa đối với cả con người và động vật. Kháng vi sinh đã được Tổ chức Y tế Thế giới (WHO) công nhận là một trong 10 nguy cơ sức khỏe toàn cầu lớn nhất, với dữ liệu báo cáo năm 2020 về kháng vi sinh (AMR) với 3.106.002 trường hợp nhiễm trùng xác nhận ở người tại 70 quốc gia. Trong công trình này, một số dẫn xuất indole dựa trên sulfonamide mới đã được tổng hợp bằng cách sử dụng axit 1H-indole-2-carboxylic làm nguyên liệu chính. Cấu trúc của tất cả các dẫn xuất indole dựa trên sulfonamide đã được xác nhận bằng phương pháp phổ 1H NMR và LCMS. Tất cả các hợp chất đã tổng hợp được sàng lọc về hoạt tính kháng khuẩn đối với Staphylococcus aureus (Gram dương), Bacillus megaterium (Gram dương), và Klebsiella pneumonia, Escherichia coli, Salmonella typhiae, Shigella sp., Enterobacter aerogenes (Gram âm). Trong số các vi khuẩn Gram dương, Staphylococcus aureus và Bacillus megaterium cho thấy hợp chất có hoạt tính chống lại Staphylococcus aureus, trong khi đối với tất cả các vi khuẩn Gram âm, Klebsiella pneumonia cho thấy hoạt tính tốt.

Từ khóa

#Hóa học dược phẩm #indole #dẫn xuất sulfonamide #hoạt tính sinh học #kháng khuẩn #kháng vi sinh

Tài liệu tham khảo

Menazea AA, Eid MM, Ahmed MK (2020) Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. Int J Biol Macromol 147:194–199. https://doi.org/10.1016/j.ijbiomac.2020.01.041 Annunziato G (2019) Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: a review. Int J Mol Sci 20:5844. https://doi.org/10.3390/ijms20235844 Khameneh B, Iranshahy M, Soheili V, Sedigheh B, Bazzaz F (2019) review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:1–28. https://doi.org/10.1186/s13756-019-0559-6 NasiriSovari S, Zobi F (2020) Recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. Chemistry (Easton) 2:418–452. https://doi.org/10.3390/chemistry2020026 WHO (2021) Global antimicrobial resistance and use surveillance system (GLASS) report 2021. http://www.who.int/glass/resources/publications/early-implementation-report-2020/en/. Accessed 2021. Ahmad N, Wee CE, Wai LK, Zin NM, Azmi F (2021) Biomimetic amphiphilic chitosan nanoparticles: synthesis, characterization and antimicrobial activity. Carbohydr Polym 254:117299. https://doi.org/10.1016/j.carbpol.2020.117299 Faruk A (2018) Antimicrobial activity of 1,3,4-thiadiazole derivatives: a recent review. J Appl Pharm Res 6:10–19. https://doi.org/10.18231/2348-0335.2018.0012 Kakkar AK, Shafiq N, Singh G, Ray P, Gautam V, Agarwal R et al (2020) Antimicrobial stewardship programs in resource constrained environments: understanding and addressing the need of the systems. Front Public Heal. https://doi.org/10.3389/fpubh.2020.00140 Manandhar S, Luitel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med. https://doi.org/10.1155/2019/1895340 Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896. https://doi.org/10.1038/nrmicro2693 Liu Z, Tang L, Zhu H, Xu T, Qiu C, Zheng S et al (2016) Design, synthesis, and structure-activity relationship study of novel indole-2-carboxamide derivatives as anti-inflammatory agents for the treatment of sepsis. J Med Chem 59:4637–4650. https://doi.org/10.1021/acs.jmedchem.5b02006 Kumar S, Ritika X (2020) A brief review of the biological potential of indole derivatives. Futur J Pharm Sci. https://doi.org/10.1186/s43094-020-00141-y Van Order RB, Lindwall H (1942) Indole. Chem Rev. https://doi.org/10.1021/cr60095a004 Kumari A, Singh RK (2019) Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 89:103021. https://doi.org/10.1016/j.bioorg.2019.103021 Jia Y, Wen X, Gong Y, Wang X (2020) Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur J Med Chem 200:112359. https://doi.org/10.1016/j.ejmech.2020.112359 Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK et al (2013) Biomedical importance of indoles. Molecules 18:6620–6662. https://doi.org/10.3390/molecules18066620 Thanikachalam PV, Maurya RK, Garg V, Monga V (2019) An insight into the medicinal perspective of synthetic analogs of indole: a review. Eur J Med Chem 180:562–612. https://doi.org/10.1016/j.ejmech.2019.07.019 Dadashpour S, Emami S (2018) Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur J Med Chem 150:9–29. https://doi.org/10.1016/j.ejmech.2018.02.065 Amr AEGE, Abdalla MM, Al-Omar MA, Elsayed EA (2017) Anti-ovarian and anti-breast cancers with dual topoisomerase ii/braf600e inhibitors activities of some substituted indole derivatives. Biomed Res 28:75–80 Tetali SR, Kunapaeddi E, Mailavaram RP, Singh V, Borah P, Deb PK et al (2020) Current advances in the clinical development of anti-tubercular agents. Tuberculosi 125:101989. https://doi.org/10.1016/j.tube.2020.101989 Dogamanti A, Chiranjeevi P, Aamate VK, Vagolu SK, Sriram D, Balasubramanian S et al (2020) Indole-fused spirochromenes as potential anti-tubercular agents: design, synthesis and in vitro evaluation. Mol Divers. https://doi.org/10.1007/s11030-020-10108-z Deswal S, Naveen TRK, GhuleVikas D, Lal K, Kumar A (2020) 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.127982 Angelova VT, Pencheva T, Vassilev N, Simeonova R, Momekov G, Valcheva V (2019) New indole and indazole derivatives as potential antimycobacterial agents. Med Chem Res 28:485–497. https://doi.org/10.1007/s00044-019-02293-w Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X et al (2019) The Journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic. J Med Chem 62:4851–4883. https://doi.org/10.1021/acs.jmedchem.8b00843 Zhou G, Chu S, Nemati A, Huang C, Snyder BA, Ptak RG et al (2019) Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur J Med Chem 161:533–542. https://doi.org/10.1016/j.ejmech.2018.10.048 Elshemy HAH, Zaki MA, Mohamed EI, Khan SI, Lamie PF (2020) A multicomponent reaction to design antimalarial pyridyl-indole derivatives: synthesis, biological activities and molecular docking. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2020.103673 Luthra T, Nayak AK, Bose S, Chakrabarti S, Gupta A, Sen S (2019) Indole based antimalarial compounds targeting the melatonin pathway: their design, synthesis and biological evaluation. Eur J Med Chem 168:11–27. https://doi.org/10.1016/j.ejmech.2019.02.019 Shaker AMM, Abdelall EKA, Abdellatif KRA, Abdel-Rahman HM (2020) Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem 14(1):1–15. https://doi.org/10.1186/s13065-020-00675-5 Al-Ostoot FH, Geetha DV, Mohammed YHE, Akhileshwari P, Sridhar MA, Khanum SA (2019) Design-based synthesis, molecular docking analysis of an anti-inflammatory drug, and geometrical optimization and interaction energy studies of an indole acetamide derivative. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127244 Ashok P, Chander S, Smith TK, Prakash Singh R, Jha PN, Sankaranarayanan M (2019) Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg Chem 84:98–105. https://doi.org/10.1016/j.bioorg.2018.11.037 Porwal S, Gupta S, Chauhan PMS (2017) gem-Dithioacetylated indole derivatives as novel antileishmanial agents. Bioorganic Med Chem Lett 27:4643–4646. https://doi.org/10.1016/j.bmcl.2017.09.018 Bingul M, Ercan S, Boga M (2020) The design of novel 4,6-dimethoxyindole based hydrazide-hydrazones: molecular modeling, synthesis and anticholinesterase activity. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128202 Bingül M (2019) Synthesis and characterisation of novel 4,6-dimethoxyindole-7- and -2-thiosemicarbazone derivatives: biological evaluation as antioxidant and anticholinesterase candidates. J Chem Res 43:399–406. https://doi.org/10.1177/1747519819868386 Fantacuzzi M, De Filippis B, Gallorini M, Ammazzalorso A, Giampietro L, Maccallini C et al (2020) Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur J Med Chem 185:111815. https://doi.org/10.1016/j.ejmech.2019.111815 Islam MS, Barakat A, Al-Majid AM, Ali M, Yousuf S, Iqbal Choudhary M et al (2018) Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors in vitro. Bioorg Chem 79:350–354. https://doi.org/10.1016/j.bioorg.2018.05.004 Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N et al (2021) Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin –induced diabetic albino wistar rats. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.104808 Arshad M (2017) Synthesis, characterization, antimicrobial and computational studies of some sulfonamide derivatives possessing thiadiazole and indole nucleus. Eur J Pharm Med Res 4:511–517 Chohan ZH, Youssoufi MH, Jarrahpour A, Ben Hadda T (2010) Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: indolenyl sulfonamide derivatives. Eur J Med Chem 45:1189–1199. https://doi.org/10.1016/j.ejmech.2009.11.029 Hu Y, Zhang L, Huang J, Wang T, Zhang J et al (2021) Novel schiff base-conjugated para aminobenzenesulfonamide indole hybrids as potentially muti-targeting blockers against Staphylococcus. Asian J Organ Chem 11:6–7. https://doi.org/10.1002/ajoc.202100737 Jagadeesan S, Karpagam S (2023) Novel series of N-acyl substituted indole based piperazine, thiazole and tetrazoles as potential antibacterial, antifungal, antioxidant and cytotoxic agents, and their docking investigation as potential Mcl-1 inhibitors. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134013 Al-Wabli RI, Almomen AA, Almutairi MS, Keeton AB, Piazza GA, Attia MI (2020) New isatin–indole conjugates: synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des Devel Ther 14:483–495. https://doi.org/10.2147/DDDT.S227862 Umar Basha KN, Gnanamani S, Shanmugam P, Venugopal S, Murthy S, Ramasamy B (2021) Synthesis, antioxidant, and antimicrobial activity of 3-(1H-indole-3-carbonyl)-2H-chromen-2-ones. J Heterocycl Chem 58:2000–2008. https://doi.org/10.1002/jhet.4326 Bitombo AN, Zintchem AAA, Atchade AdeT, Moni Ndedi EDF, Khan A, NgonoBikobo DS et al (2022) Antimicrobial and cytotoxic activities of indole alkaloids and other constituents from the stem barks of Rauvolfia caffra Sond (Apocynaceae). Nat Prod Res 36:1467–1475. https://doi.org/10.1080/14786419.2021.1891054 Dolušić E, Larrieu P, Blanc S, Sapunaric F, Norberg B, Moineaux L et al (2011) Indol-2-yl ethanones as novel indoleamine 2,3-dioxygenase (IDO) inhibitors. Bioorganic Med Chem 19:1550–1561. https://doi.org/10.1016/j.bmc.2010.12.032 Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K et al (2013) Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies. Eur J Med Chem 68:372–384. https://doi.org/10.1016/j.ejmech.2013.07.037 Tanuma SI, Katsuragi K, Oyama T, Yoshimori A, Shibasaki Y, Asawa Y et al (2020) Structural basis of beneficial design for effective nicotinamide phosphoribosyltransferase inhibitors. Molecules 25:1–15. https://doi.org/10.3390/molecules25163633 Rubab L, Afroz S, Ahmad S, Hussain S, Nawaz I, Irfan A, Batool F, Kotwica-Mojzych K, Mojzych M (2022) An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents. Molecules 27:1604. https://doi.org/10.3390/molecules27051604 Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M et al (2018) Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.01639