Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp và tính chất của N,N′-phenyltetrazole mới
Tóm tắt
Bài báo này báo cáo về việc tổng hợp một receptor N,N′-phenyltetrazole mới có khả năng tạo màu. Tính chất gắn cation của receptor này trong dung dịch đã được nghiên cứu bằng các phương pháp thay đổi màu mắt thường, điện hóa và quang phổ UV-Vis trong các dung môi khác nhau (CH3CN, dimethylsulphoxide (DMSO), DMSO/H2O, CH3CN/H2O và CH3CN/MeOH). Ngoài ra, receptor còn được sử dụng làm vật liệu cảm biến trong các điện cực màng chọn lọc ion. Đặc tính chọn lọc và độ nhạy của các điện cực này đối với các cation kiềm, kiềm thổ, kim loại chuyển tiếp và kim loại nặng trong dung dịch nước đã được thử nghiệm. Mối quan hệ giữa cấu trúc mang và chất dẻo màng đã được nghiên cứu.
Từ khóa
#N #N′-phenyltetrazole #receptor #cation #điện cực màng chọn lọc ion #UV-Vis spectroscopyTài liệu tham khảo
Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson’s disease. Lancet, 369, 397–408. DOI: 10.1016/s0140-6736(07)60196-2.
Aromi, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255, 485–546. DOI: 10.1016/j.ccr.2010.10.038.
Baker, E. (1997). Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Analytical Chemistry, 69, 1061–1069. DOI: 10.1021/ac960891m.
Barceloux, D. G. (1999). Copper. Journal of Toxicology–Clinical Toxicology, 37, 217–230.
Benesi, H. A., & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71, 2703–2707. DOI: 10.1021/ja01176a030.
Brewer, G. J. (2007). Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Experimental Biology Medicine, 232, 323–335.
Brzozka, Z. (1988). Transition metal ion-selective membrane electrodes based on complexing compounds with heteroatoms. Part II. Complexing compounds containing sulphur atoms. Analyst, 113, 1803–1805. DOI: 10.1039/an9881301803.
Chao, J. B., Zhang, Y., Wang, H. F., Zhang, Y. B., Huo, F. J., Yin, C. X., Qin, L. P., & Wang, Y. (2013). A coumarin–based fluorescent probe for selective detection of Cu2+ in water. Journal of Coordination Chemistry, 66, 3857–3867. DOI: 10.1080/00958972.2013.855896.
Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chemical Reviews, 106, 1995–2044. DOI: 10.1021/cr040410w.
Ganjali, M. R., Poursaberi, T., Babaei, L. H., Rouhani, S., Yoursefi, M., Karga-Razi, M., Moghimi A., Aghabozorg, H., & Shamsipur, M. (2001). Highly selective and sensitive copper( II) membrane coated graphite electrode based on a recently synthesized Schiff’s base. Analytica Chimica Acta, 440, 81–87. DOI: 10.1016/s0003-2670(01)01051-0.
Georgopoulos, P. G., Roy, A., Yonone-Lioy, M. J., Opiekun, R. E., & Lioy, P. J. (2001). Environmental copper: its dynamics and human exposure issues. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 4, 341–394. DOI: 10.1080/109374001753146207.
Goswami, S., Maity, S., Das, A. K., & Maity, A. C. (2013). Single chemosensor for highly selective colorimetric and fluorometric dual sensing of Cu(II) as well as ‘NIRF’ to acetate ion. Tetrahedron Letters, 54, 6631–6634. DOI: 10.1016/j.tetlet.2013.09.126.
Hassan, S. S. M., Elnemma, E. M., & Mohamed, A. H. K. (2005). Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta, 66, 1034–1041. DOI: 10.1016/j.talanta. 2005.01.007.
Herr, R. J. (2002). 5-Substiuted 1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorganic & Medicinal Chemistry, 10, 3379–3393. DOI: 10.1016/s0968-0896(02)00239-0.
Holland, G. F., & Pereira, J. N. (1967). Heterocyclic tetrazoles, a new class of lipolysis inhibitors. Journal of Medicinal Chemistry, 10, 149–154. DOI: 10.1021/jm00314a004.
Huang, J. H., Xu, Y. F., & Qian, X. H. (2009). A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+–ligand interactions. Dalton Transactions, 14, 1761–1766. DOI: 10.1039/b816999c.
Huo, J. Z., Liu, K., Zhao, X. J., Zhang, X. X., & Wang, Y. (2014). Simple and sensitive colorimetric sensors for the selective detection of Cu2+T. M., Mayer, P., Schulz, A., in aqueous buffer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 789–792. DOI: 10.1016/j.saa.2013.09.104.
Hrishikesan, E., & Kannan, P. (2013). Azobenzene chemosensor based on nitrogen chelator for the detection of Cu(II) ion in aqueous medium. Inorganic Chemistry Communications, 37, 21–25. DOI: 10.1016/j.inoche.2013.09.010.
Kamel, A. H., Mahmoud, W. H., & Mostafa, M. S. (2010). Response characteristics of copper-selective polymer membrane electrodes based on a newly synthesized macrocyclic calix[4]arene derivative as a neutral carrier ionophore. Electroanalysis, 22, 2453–2459. DOI: 10.1002/elan.201000187.
Kamel, A. H., Kalifa, M. E., Abd El-Maksoud, S. A., & Egendy, F. A. (2014). Fabrication of novel sensors based on a synthesized acyclic pyridine derivative ionophore for potentiometric monitoring of copper. Analytical Methods, 6, 7814–7822. DOI: 10.1039/c4ay00818a.
Klapöotke, T. M., Mayer, P., Schulz, A., & Weigand, J. J. (2005). 1,5-Diamino-4-methyltetrazolium dinitramide. Journal of the American Chemical Society, 127, 2032–2033. DOI: 10.1021/ja042596m.
Kumar, A., Kumar, V., Diwan, U., & Upadhyay, K. K. (2013). Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin-quinoxaline derivative. Sensors and Actuators B: Chemical, 176, 420–427. DOI: 10.1016/j.snb.2012.09.089.
Marcus, Y. (1985). Ions solvation. Chichester, UK: Willey.
Miao, L. J., Xin, J. W., Shen, Z. Y., Zhang, Y. J., Wang, H. Y., & Wu, A. G. (2013). Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. Sensors and Actuators B: Chemical, 176, 906–912. DOI: 10.1016/j.snb.2012.10.070.
Millhuster, G. L. (2004). Copper binding in the prion protein. Accounts of Chemical Research, 37, 79–85. DOI: 10.1021/ar0301678.
Noh, J. Y., Park, G. J., Na, Y. J., Jo, H. Y., Lee, S. A., & Kim, C. (2014). A colorimetric “naked-eye” Cu(II) chemosensor and pH indication in 100 % aqueous solution. Dalton Transactions, 43, 5652–5656. DOI: 10.1039/c3dt53637h.
Ogihara, W., Yashizawa, M., & Ohno, H. (2004). Novel ionic liquids composed of only azole ions. Chemistry Letters, 33, 1022–1023. DOI: 10.1246/cl.2004.1022.
Park, S. J., Shon, O. J., Rim, J. A., Lee, J. K., Kim, J. S., Nam, H., & Kim, H. (2001). Calixazacrown ethers for copper( II) ion-selective electrode. Talanta, 55, 297–304. DOI: 10.1016/s0039-9140(01)00420-9.
Pazik, A., & Skwierawska, A. (2012). Chromogenic derivatives of new bis(phenylhydrazono-1H-tetrazol-5-yl-acetonitriles)–synthesis and properties. Supramolecular Chemistry, 24, 726–736. DOI: 10.1080/10610278.2012.701303.
Pazik, A., & Skwierawska, A. (2013). Synthesis and spectroscopic properties of new bis-tetrazoles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 77, 83–94. DOI: 10.1007/s10847-012-0219-4.
Pazik, A., & Skwierawska, A. (2014). Synthesis and application of tetrazole di-and triamide derivatives in ion-selective membrane electrodes. Sensors and Actuators B: Chemical, 196, 370–380. DOI: 10.1016/j.snb.2014.01.072.
Sadeghi, S., Eslahi, M., Naseri, M. A., Naeimi, H., Sharghi, H., & Shameli, A. (2003). Copper ion selective membrane electrodes based on some schiff base derivatives. Electroanalysis, 15, 1327–1333. DOI: 10.1002/elan.200302807.
Shamsipur, M., Javanbakht, M., Mousavi, M. F., Ganjali, M. R., Lippolis, V., Garau, A., & Tei, L. (2001). Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta, 55, 1047–1054. DOI: 10.1016/s0039-9140(01)00434-9.
Singh, L. P., & Bhatnagar, J. M. (2004). Copper(II) selective electrochemical sensor based on Schiff base complexes. Talanta, 64, 313–319. DOI: 10.1016/j.talanta.2004.02.020.
Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, Part A: Current Issues, 73, 114–127. DOI: 10.1080/15287390903337100.
Suganya, S., Velmathi, S., & MubarakAli, D. (2014). Highly selective chemosensor for nano molar detection of Cu2+ ion by fluorescent turn-on response and its application in living cells. Dyes and Pigments, 104, 116–122. DOI: 10.1016/j.dyepig.2014.01.001.
Wang, Z. J., Fan, X. J., Li, D. H., & Feng, L. H. (2008). A highly selective and colorimetric naked-eye chemosensor for Cu2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1224–1227. DOI: 10.1016/j.saa.2008.03.021.
Wang, C. M., Lu, L. J., Ye, W. M., Zheng, O., Qiu, B., Lin, Z. Y., Guo, L. H., & Chen, G. N. (2014). Fluorescence sensor for Cu(II) in the serum sample based on click chemistry. Analyst, 139, 656–659. DOI: 10.1039/c3an01262j.
Xu, Z. H., Zhang, L., Guo, R., Xiang, T. C., Wu, C. Z., Zheng, Z., & Yang, F. L. (2011). A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors and Actuators B: Chemical, 156, 546–552. DOI: 10.1016/j.snb.2011.01.066.
Xue, H., Gao, Y., Twamley, B., & Shreeve, J. M. (2005). New energetic salts based on nitrogen-containing heterocycles. Chemistry of Materials, 17, 191–198. DOI: 10.1021/cm0488 64x.
Yu, C. W., Wang, T., Xu, K., Z hao, J., Li, M. H., Weng, S. X., & Zhang, J. (2013). Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes and Pigments, 96, 38–44. DOI: 10.1016/j.dyepig.2012.07.016.
Zhang, L., & Zhang, X. A. (2014). A selectively fluorescein–based colorimetric probe for detecting copper(II) ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 54–59. DOI: 10.1016/j.saa.2014.04.130.
