Synthesis and physical characterization of Ag nanoparticles and their interaction with Fe

Journal of Luminescence - Tập 190 - Trang 207-214 - 2017
Paula Rodríguez-Santana1, Ana Isabel Jiménez-Abizanda1, Alberto Hernández-Creus2, Francisco Jiménez-Moreno1
1Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias. Sección de Química, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. 38206 La Laguna, Tenerife, Islas Canarias, Spain
2Departamento de Química, Unidad Departamental de Química Física, Facultad de Ciencias, Sección de Química, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. 38206 La Laguna, Tenerife, Islas Canarias, Spain

Tài liệu tham khảo

EI-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n

Burda, 2005, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025, 10.1021/cr030063a

Liang, 2012, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem., 37, 32, 10.1016/j.trac.2012.03.015

Eustis, 2006, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev., 35, 209, 10.1039/B514191E

Qu, 2016, Fluorescent silver nanoclusters capped by polyethyleneimine with different molecular weights: universal synthesis and application as a temperature sensor, J. Lumin., 177, 133, 10.1016/j.jlumin.2016.04.040

Reddy, 2012, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications, Chem. Rev., 112, 5818, 10.1021/cr300068p

Lee, 1982, Adsorption and surface-enhanced raman of dyes on silver and gold sols, J. Phys. Chem., 86, 3391, 10.1021/j100214a025

Creighton, 1979, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday Trans. II, 75, 790, 10.1039/f29797500790

Maillard, 2003, Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties, J. Phys. Chem. B, 107, 2466, 10.1021/jp022357q

Dong, 2011, Tandem synthesis of silver nanoparticles and nanorods in the presence of poly(oxyethylene)-amidoacid template, Eur. Polym. J., 47, 1383, 10.1016/j.eurpolymj.2011.04.003

Peyser, 2001, Photoactivated fluorescence from individual silver nanoclusters, Science, 291, 103, 10.1126/science.291.5501.103

Lee, 2001, Simultaneous preparation of SERS-active metal colloids and plates by laser ablation, J. Raman Spectrosc., 32, 947, 10.1002/jrs.781

Phu, 2010, Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation, J. Exp. Nanosci., 5, 169, 10.1080/17458080903383324

Bahadur, 2011, Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation, J. Colloid Interface Sci., 355, 312, 10.1016/j.jcis.2010.12.016

Jin, 2001, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 294, 1901, 10.1126/science.1066541

Santos, 2012, Synthesis and catalytic properties of silver nanoparticle–linear polyethylene imine colloidal systems, J. Phys. Chem. C, 116, 4594, 10.1021/jp2087169

Liang, 2012, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem., 37, 32, 10.1016/j.trac.2012.03.015

Griffo, 2011, Enhanced photoluminescence of conjugated polymer thin films on nanostructured silver, J. Lumin., 131, 1594, 10.1016/j.jlumin.2011.02.040

Dukes, 2014, Core–shell silver nanoparticles for optical labeling of cells, Anal. Biochem., 458, 43, 10.1016/j.ab.2014.04.015

Liu, 2012, TAT-modified nanosilver for combating multidrug-resistant cancer, Biomaterials, 33, 6155, 10.1016/j.biomaterials.2012.05.035

Jin, 2014, Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers, Biosens. Bioelectron., 55, 464, 10.1016/j.bios.2013.12.025

Yola, 2014, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide, Electrochim. Acta, 125, 38, 10.1016/j.electacta.2014.01.074

Yola, 2014, A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin, Electrochim. Acta, 119, 24, 10.1016/j.electacta.2013.12.028

Chen, 2010, Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications, Surf. Coat. Tech., 204, 3871, 10.1016/j.surfcoat.2010.05.003

Ho, 2012, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions, Anal. Chem., 84, 3246, 10.1021/ac203362g

Zhou, 2014, Amplified detection of iron ion based on plasmon enhanced fluorescence and subsequently fluorescence quenching, Nano-Micro Lett., 6, 327, 10.1007/s40820-014-0005-5

Chansuvarn, 2015, Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials, TrAC Trends Anal. Chem., 65, 83, 10.1016/j.trac.2014.10.013

Zhang, 2016, Green-emitting fluorescence Ag clusters: facile synthesis and sensors for Hg2+ detection, New J. Chem., 40, 1175, 10.1039/C5NJ02268A

Douglas Gallardo, 2012, Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature, RSC Adv., 2, 2923, 10.1039/c2ra01044e

〈http://srdata.nist.gov/xps/default.aspx〉. NIST X-ray Photoelectron Spectroscopy (XPS) – SRDATA at NIST, last (Accessed May 2017).

Kavitha, 2014, Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles, Spectrochim, Acta Part A, 133, 472, 10.1016/j.saa.2014.06.007

Lakowicz, 1983, 257

Ayala, 1997, Fluorescence quenching of polycyclic aromatic hydrocarbons by cetylpyridinium bromide: discrimination between alternant and nonalternant hydrocarbons, Appl. Spectrosc., 57, 380, 10.1366/0003702971940242