Synthesis and characterization of CuO nanowires by a simple wet chemical method

Anita Sagadevan Ethiraj1, Dae Joon Kang1
1BK21 Physics Research Division, Department of Energy Science, Institute of Basic Science, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 440-746, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Patzke GR, Krumeich F, Nesper R: Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew Chem Int Ed 2002, 41: 2446–2461. 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K

Dekker C: Carbon nanotubes as molecular quantum wires. Phys Today 1999, 52: 22.

Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM: Logic gates and computation from assembled nanowire building blocks. Science 2001, 294: 1313–1317. 10.1126/science.1066192

Hu J, Odom TW, Lieber CM: Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Re 1999, 32: 435–445. 10.1021/ar9700365

Martel R, Schmidt T, Shea HR, Hertel T, Avouris P: Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 1998, 73: 2447–2449. 10.1063/1.122477

Marabelli F, Parravicini GB, Salghetti-Drioli F: Optical gap of CuO. Phys Rev B 1995, 52: 1433–1436. 10.1103/PhysRevB.52.1433

Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S, Zou B: Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 2004, 15: 37–42. 10.1088/0957-4484/15/1/007

Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW: Enantiospecific electrodeposition of a chiral catalyst. Nature 2003, 425: 490–493. 10.1038/nature01990

Anandan S, Wen X, Yang S: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 2005, 93: 35–40. 10.1016/j.matchemphys.2005.02.002

Chowdhuri A, Sharma P, Gupta V, Sreenivas K, Rao KV: H2S gas sensing mechanism of SnO2films with ultrathin CuO dotted islands. J Appl Phys 2002, 92: 2172–2180. 10.1063/1.1490154

Bennici S, Gervasini A: Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2). Appl Catal B 2006, 62: 336–344. 10.1016/j.apcatb.2005.09.001

Ghosh S, Avasthi DK, Shah P, Ganesan V, Gupta A, Sarangi D, Bhattacharya R, Assmann W: Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 2000, 57: 377–385. 10.1016/S0042-207X(00)00151-2

Hsieh CT, Chen JM, Lin HH, Shin HC: Field emission from various CuO nanostructures. Appl Phys Lett 2003, 83: 3383–3385. 10.1063/1.1619229

Gillingham DM, Müller C, Hong J, Wu RQ, Bland JAC: Evidence of spin-dependent quantum transport effects in CuO nanowires. J Phys Cond Matter 2006, 18: 9135–9142. 10.1088/0953-8984/18/39/039

Kaur M, Muthe KP, Despande SK, Choudhury S, Singh JB, Verma N: Growth and branching of CuO nanowires by thermal oxidation of copper. J Cryst Growth 2006, 289: 670–675. 10.1016/j.jcrysgro.2005.11.111

Cao MH, Wang YH, Guo CX, Qi YJ, Hu CW, Wang EB, Nanosci J: A simple route towards CuO nanowires and nanorods. Nanotech 2004, 4: 824–828.

Wang WZ, Varghese OK, Ruan CM, Paulose M, Grimes CA: Synthesis of CuO and Cu [sub 2] O crystalline nanowires using Cu (OH)[sub 2] nanowire templates. J Mater Res 2003, 18: 2756–2759. 10.1557/JMR.2003.0384

Xu C, Lin Y, Xu G, Wang G: Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4precursor. Mater Res Bull 2002, 37: 2365–2372. 10.1016/S0025-5408(02)00848-6

Jiang XC, Herricks T, Xia YN: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2002, 2: 1333–1338. 10.1021/nl0257519

Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D: Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 2004, 108: 3955–3958. 10.1021/jp036826f

Gao X, Li X, Yu W: Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted hermolysis of zinc-ethylenediamine complex. Phys Chem B 2005, 109: 1155–1161. 10.1021/jp046267s

Ethiraj AS, Hebalkar N, Kulkarni SK, Pasricha R, Dem C, Schmitt M, Kiefer W, Weinhardt L, Joshi S, Fink R, Heske C, Kumpf C, Umbach E: Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. J Chem Phys 2003, 118: 8945–8953. 10.1063/1.1566932

Khosravi AA, Kundu MM, Kuruvilla BA, Shekhawat GS, Gupta RP, Sharma AK, Vyas PD, Kulkarni SK: Manganese doped zinc sulphide nanoparticles by aqueous method. Appl Phys Lett 1995, 67: 2506–2508. 10.1063/1.114440

Zhu J, Chen H, Liu H, Yang X, Lu L, Wang X: Needle-shaped nanocrystalline CuO prepared by liquid hydrolysis of Cu(OAc)2. Mater Sci and Eng 2004, A 384: 172–176.

Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L: Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater Lett 2007, 61: 5236–5238. 10.1016/j.matlet.2007.04.037

Wang JZ, Xu J, Zhu J, Chen HY: Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 2002, 244: 88–94. 10.1016/S0022-0248(02)01571-3

Nyquist RA, Kagel RO: Infrared Spectra of Inorganic Compounds. New York and London: Academic Press; 1997:220.

Kliche K, Popovic ZV: Far-infrared spectroscopic investigations on CuO. Phys Rev B 1990, 42: 10060–10066. 10.1103/PhysRevB.42.10060

Zheng L, Liu X: Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature. Mater Lett 2007, 61: 2222–2226. 10.1016/j.matlet.2006.08.063

Moulder J, Sticke W, Sobol P, Bomben K: Standard ESCA spectra of the elements and line energy information. In Handbook of X-ray Photoelectron Spectroscopy. Edited by: Chastain J. USA: Perkin Elmer Coorporation: Physical Electronics Division; 1992.

Hong ZS, Cao Y, Deng JF: A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett 2002, 52: 34–38. 10.1016/S0167-577X(01)00361-5

Zarate RA, Hevia F, Fuentes S, Fuenzalida VM, Zuniga A: Novel route to synthesize CuO nanoplatelets. J Solid State Chem 2007, 180: 1464–1469. 10.1016/j.jssc.2007.01.040