Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material
Tóm tắt
The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg−1. The achieved initial discharge capacity was 1080 mAhg−1, and 786 mAhg−1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.
Tài liệu tham khảo
F. Wu, M. Wang, Y.F. Su, and S. Chen, J. Power Sources 189, 743 (2009).
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, Nature 407, 496 (2000).
K.V. Gurav, J.H. Yun, S.M. Pawar, S.W. Shin, M.P. Suryawanshi, Y.K. Kim, G.L. Agawane, P.S. Patil, and J.H. Kim, Mater. Lett. 108, 316 (2013).
B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005).
Y. Miki, D. Nakazato, H. Ikuta, T. Uchida, and M. Wakihara, J. Power Sources 54, 508 (1995).
J.M. Tarascon and M. Armand, Nature 414, 359 (2001).
M. Armand and J.M. Tarascon, Nature 451, 652 (2008).
J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2009).
M. Winter and J.O. Besenhard, Electrochim. Acta 45, 31 (1999).
M.S. Xu, T. Liang, M.M. Shi, and H.Z. Chen, Chem. Rev. 113, 3766 (2013).
F. Bonaccorso, L. Colombo, G.H. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Science 347, 1246501 (2015).
S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).
G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, and H. Liu, Chem. Commun. 46, 1106 (2010).
R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).
H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, and C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010).
H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, and S.Z. Qiao, Adv. Energy Mater. 2, 970 (2012).
K. Chang and W.X. Chen, ACS Nano 5, 4720 (2011).
X.H. Cao, Y.M. Shi, W.H. Shi, X.H. Rui, Q.Y. Yan, J. Kong, and H. Zhang, Small 9, 3433 (2013).
Y. Jing, E.O. Ortiz-Quiles, C.R. Cabrera, Z. Chen, and Z. Zhou, Electrochim. Acta 147, 392 (2014).
C.Q. Feng, L.F. Huang, Z.P. Guo, and H.K. Liu, Electrochem. Commun. 9, 119 (2007).
S.Q. Wang, G.H. Li, G.D. Du, X.Y. Jiang, C.Q. Feng, Z.P. Guo, and S.J. Kim, Chem. Eng. 18, 910 (2010).
C.Q. Feng, J. Ma, H. Li, R. Zeng, Z.P. Guo, and H.K. Liu, Mater. Res. Bull. 44, 1811 (2009).
X. Chen, L. Li, S. Wang, C.Q. Feng, and Z.P. Guo, Mater. Lett. 164, 595 (2016).
J. Heising and M.G. Kanatzidis, J. Am. Chem. Soc. 121, 11720 (1999).
H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R.T. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones, Nano Lett. 13, 3447 (2012).
K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, and H. Zhang, Nano Lett. 12, 1538 (2012).
K. Shiva, H.S.S. Ramakrishna Matte, H.B. Rajendra, A.J. Bhattacharyya, and C.N.R. Rao, Nano Energy 2, 787 (2013).
J. Yang, D. Voiry, S.J. Ahn, D. Kang, A.Y. Kim, M. Chhowalla, and H.S. Shin, Angew. Chem. Int. Ed. 52, 13751 (2013).
J. Zhang, Q. Wang, L.H. Wang, X.A. Li, and W. Huang, Nanoscale 7, 10391 (2015).
X.D. Xu, C.S. Rout, J. Yang, R.G. Cao, P. Oh, H.S. Shin, and J. Cho, J. Mater. Chem. A 1, 14548 (2013).
D.Y. Chen, G. Ji, B. Ding, Y. Ma, B.H. Qu, W.X. Chen, and J.Y. Lee, Nanoscale 5, 7890 (2013).
Y. Liu, W. Wang, H.B. Huang, L. Gu, Y.W. Wang, and X.S. Peng, Chem. Commun. 50, 4485 (2014).
S.H. Choi, S.J. Boo, J.H. Lee, and Y.C. Kang, Sci. Rep. 4, 5755 (2014).
C. Altavilla, M. Sarno, and P. Ciambelli, Chem. Mater. 23, 3879 (2011).
M.L. Zou, Y. Jiang, M. Wan, M. Zhang, H. Zhu, T.T. Yang, and M.L. Du, Electrochim. Acta 176, 255 (2015).
H. Hwang, H. Kim, and J. Cho, Nano Lett. 11, 4826 (2011).
Q. Wang and J. Li, J. Phys. Chem. C 111, 1675 (2007).
K.S. Liang, R.R. Chianelli, F.Z. Chien, S.C. Moss, and J. Non-Cryst, Solids 79, 251 (1986).
S. Yu, J.W. Jung, and I.D. Kim, Nanoscale 7, 11945 (2015).
H.H. Li, K. Yu, X. Lei, B.J. Guo, C. Li, H. Fu, and Z.Q. Zhu, Dalton T. 44, 10438 (2015).
W.J. Zhou, Z.Y. Yin, Y.P. Du, X. Huang, Z.Y. Zeng, Z.X. Fan, H. Liu, J.Y. Wang, and H. Zhang, Small 9, 140 (2013).
Z. Lin, L. Ji, M.D. Woodroof, and X. Zhang, J. Power Sources 195, 5025 (2010).
R. Chen, T. Zhao, W.P. Wu, F. Wu, L. Li, J. Qian, R. Xu, H.M. Wu, H.M. Albishri, A.S. Al-Bogami, D.A. El-Hady, J. Lu, and K. Amine, Nano Lett. 14, 5899 (2014).
R.R. Haering, J.A.R. Stiles, and K. Brandt, US Patent 4224390 (1980).
G.H. Zhang, J. Zhu, W. Zeng, S.C. Hou, F.L. Gong, F. Li, C.C. Li, and H.G. Duan, Nano Energy 4, 65 (2014).
L. Shen, E. Uchaker, X. Zhang, and G. Cao, Adv. Mater. 24, 6502 (2012).
J.F. Li, S.L. Xiong, X.W. Li, and Y.T. Qian, Nanoscale 5, 2045 (2013).
Q. Jiang, X. Chen, H. Gao, C.Q. Feng, and Z.P. Guo, Electrochim. Acta 190, 703 (2016).
S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q.F. Zhang, and G.Z. Cao, J. Mater. Chem. A 2, 7862 (2014).
H. Zheng, C.Q. Feng, S.J. Kim, S.Y. Yin, H.M. Wu, S.Q. Wang, and S.B. Li, Electrochim. Acta 88, 225 (2013).
S.B. Yang, X.L. Feng, L.J. Zhi, Q.A. Cao, J. Maier, and K. Mullen, Adv. Mater. 22, 838 (2010).
H.C. Shin, W.I. Cho, and H. Jang, Electrochim. Acta 52, 1472 (2006).
W. Wang, Y. Yang, S.J. Yang, Z.P. Guo, C.Q. Feng, and X.C. Tang, Electrochim. Acta 155, 297 (2015).
L. Lu, F. Min, Z. Luo, S. Wang, F. Teng, G. Li, and C.Q. Feng, J. Nanopart. Res. 18, 357 (2016).
Q. Jiang, X. Chen, L. Li, C.Q. Feng, and Z.P. Guo, J. Electron. Mater. 46, 1079 (2017).