Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications

Fuel Cells - Tập 5 Số 2 - Trang 287-295 - 2005
Liuling Xiao1,2, H. Zhang1, Tushar Jana1, Eugene Scanlon1, Ruitai Chen1, E. W. Choe1, L. S. Ramanathan1, Seonghan Yu1, Brian C. Benicewicz
1NYS Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2Present address: PEMEAS USA-Fuel Cell Technologies, Cogswell Laboratory, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Tóm tắt

AbstractA series of polybenzimidazoles (PBIs) incorporating main chain pyridine groups were synthesized from the pyridine dicarboxylic acids (2,4‐, 2,5‐, 2,6‐ and 3,5‐) and 3,3′,4,4′‐tetraaminobiphenyl, using polyphosphoric acid (PPA) as both solvent and polycondensation reagent. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct‐casting of the PPA polymerization solution without isolation or re‐dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution state to a gel‐like state and produced PA‐doped PBI membranes with a desirable suite of physiochemical properties. The polymer structure characterization included inherent viscosity (I.V.) determination as a measurement of polymer molecular weight and thermal stability assessment via thermogravimetric analysis. Physiochemical properties of the doped membrane were studied by measurements of the PA doping level, ionic conductivity and mechanical properties. The resulting pyridine‐based polybenzimidazole membranes displayed high PA doping levels, ranging from 15 to 25 mol of PA per PBI repeat unit, which contributed to their unprecedented high proton conductivities of 0.1 to 0.2 S cm–1 at 160 °C. The mechanical property measurements showed that the pyridine‐based PBI membranes were thermally stable and maintained mechanical integrity even at high PA doping levels. Preliminary fuel cell tests demonstrated the feasibility of the novel pyridine‐based PBI (PPBI) membranes from the PPA process for operating fuel cells at temperatures in excess of 120 °C without any external humidification.

Từ khóa


Tài liệu tham khảo

10.1038/35104620

10.1016/S0378-7753(01)00812-6

10.1149/1.2054875

10.1149/1.2044337

Weng D., 1995, Proc. – Electrochem. Soc., 95, 214

10.1016/0013-4686(95)00313-4

R. F. Savinell M. H. Litt WO Patent 9737396 Case Western Reserve University USA 1997.

J. S. Wainright R. F. Savinell M. H. Litt inProceedings of the International Symposium on New Materials for Fuel Cell and Modern Battery Systems 2nd Montreal1997 p. 808.

10.1149/1.1630037

10.1016/S0013-4686(99)00349-7

10.1557/PROC-548-313

10.1039/a906060j

10.1023/A:1013872107905

10.1149/1.1837721

E. W. Choe D. D. Choe inPolymeric Materials Encyclopedia Vol. 7(Ed. J. C. Salamone) CRC Press New York 1996 p. 5619.

10.1021/ma9608277

A. B. Conciatori E. W. Choe H. K. Hall Jr. US Patent 4414383 Celanese Corp. USA 1983.

10.1021/cr020711a

10.1016/0032-3861(91)90025-E

A. H. Gerber US Patent 3741938 Horizons Research Inc. USA 1976.

Y. Iwakura K. Uno K. Nume US Patent 3741938 Maruzen Oil Co. Ltd. 1973.

Wang J. T., 1995, Proc. – Electrochem. Soc., 95, 202

10.1016/S0167-2738(02)00040-1

10.1246/bcsj.43.3705