Synthesis and Characterization of Calcium Titanate-Filled Butyl Rubber Composites for Flexible Microwave Substrate Applications

Journal of Electronic Materials - Tập 52 - Trang 5022-5034 - 2023
C. V. Muhammed Hunize1, M. A. Joseph1, K. P. Murali1
1Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode, India

Tóm tắt

Calcium titanate (CaTiO3)-filled butyl rubber (BR) composites were fabricated by mixing and hot pressing. The filler volume fraction was varied from 0 to 50%, and its effects on properties such as density, moisture absorption, dielectrics, coefficient of thermal expansion (CTE), thermal conductivity and thermal stability were studied. The phase purity of the powder was confirmed by x-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), while scanning electron microscopy (SEM) was used to analyze the dispersion, morphology and microstructure of the samples. Optimal dielectric and thermal properties were obtained for the sample having 45% filler volume fraction. Relative permittivity (εr) of 11.7, along with a low loss tangent (tan δ) of 0.0053, was achieved at the optimal filler content in the X-band (8.2–12.4 GHz) regime. A low CTE of 33.7 ppm/°C and low moisture absorption of 0.0798%, along with good thermal stability and acceptable thermal conductivity (0.6303 W/m K), were also obtained for the optimum filled sample. Moreover, an elongation of 31.9% was observed without any permanent deformation. The developed highly flexible dielectric substrate material can be effectively used for miniaturized flexible microwave circuit applications.

Tài liệu tham khảo

J. Varghese, R. Nair, and M. Thomas, Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications. Phys. Chem. Chem. Phys. 6, 14943 (2015). D. Zhou, L.-X. Pang, D.-W. Wang, C. Li, B.-B. Jin, and I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5, 10094 (2017). H.Y. Zhou, X.Q. Liu, X.L. Zhu, and X.M. Chen, CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J. Am. Ceram. Soc. 101, 1999 (2018). S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, and R. Ratheesh, Rutile filled PTFE composites for flexible microwave substrate applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 163, 1 (2009). M.T. Sebastian, H. Jantunen, and R. Ubic, Microwave Materials and Applications, 1st ed., (New Jersey: Wiley, 2017). K.P. Murali, S. Rajesh, K.S. Jacob, O. Prakash, A.R. Kulkarni, and R. Ratheesh, Preparation and characterization of cordierite filled PTFE laminates for microwave substrate applications. J. Mater. Sci. Mater. Electron. 21, 192 (2010). J. Chameswary, Butyl rubber-ceramic composites for flexible electronic applications, Doctoral thesis, Cochin University of Science and Technology (2014) A. Ashokbabu and P. Thomas, Dielectric and thermal behavior of polystyrene/Sr2TiMnO6 (STMO) composites. Trans. Indian Ceram. Soc. 80, 96 (2021). Y. Yuan, J. Wang, M. Yao, B. Tang, E. Li, and S. Zhang, Influence of SiO2 addition on properties of PTFE/TiO2 microwave composites. J. Electron. Mater. 47, 633 (2018). D. Sarmah, J.R. Deka, S. Bhattacharyya, and N.S. Bhattacharyya, Study of LDPE/TiO2 and PS/TiO2 composites as potential substrates for microstrip patch antennas. J. Electron. Mater. 39, 2359 (2010). M.T. Sebastian and H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7, 415 (2010). H. Zhang, Y. Lan, S. Qiu, S. Min, H. Jang, J. Park, S. Gong, and Z. Ma, Flexible and stretchable microwave electronics: past, present, and future perspective. Adv. Mater. Technol. 6, 2000759 (2021). A. Raveendran, M.T. Sebastian, and S. Raman, Applications of microwave materials: a review. J. Electron. Mater. 48, 2601 (2019). S. Kumar, T. Rath, R.N. Mahaling, C.K. Das, R.B. Srivastava, and S.B. Yadaw, In situ reinforcement of poly(butylene terephthalate) and butyl rubber by liquid crystalline polymer. Polym. Compos. 30, 655 (2009). J. Chameswary and M.T. Sebastian, Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J. Mater. Sci. Mater. Electron. 26, 4629 (2015). C. Janardhanan, D. Thomas, G. Subodh, S. Harshan, J. Philip, and M.T. Sebastian, Microwave dielectric properties of flexible butyl rubber-strontium cerium titanate composites. J. Appl. Polym. Sci. 124, 3426 (2012). J. Chameswary and M.T. Sebastian, Development of butyl rubber–rutile composites for flexible microwave substrate applications. Ceram. Int. 40, 7439 (2014). M. Yao, Y. Yuan, E. Li, B. Tang, and S. Zhang, Dielectric properties of PTFE/ceramic composites. J. Mater. Sci. Mater. Electron. 29, 20680 (2018). J. Chameswary, L.K. Namitha, M. Brahmakumar, and M.T. Sebastian, Material characterization and microwave substrate applications of alumina-filled butyl rubber composites. Int. J. Appl. Ceram. Technol. 11, 919 (2014). V.L. Vilesh and S. Ganesanpotti, Silicone rubber–BaBiLiTeO6 composites: flexible microwave substrates for 5G applications. J. Electron. Mater. 51, 3237 (2022). A. Tkach, T.M. Correia, A. Almeida, J. Agostinho Moreira, M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, and J. Petzelt, Role of trivalent Sr substituents and Sr vacancies in tetragonal and polar states of SrTiO3. Acta Mater. 59, 5388 (2011). S. Sasaki, C.T. Prewitt, J.D. Bass, and W.A. Schulze, Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43, 1668 (1987). E.R. Kipkoech, J. Zhu, and W. Lu, Control of microwave dielectric properties of CaTiO3-based high-permittivity ceramics using additives. J. Appl. Phys. 100, 054105 (2006). R. Ratheesh, Development and characterization of high dielectric flexible PTFE/ceramic substrates for microwave circuit applications (2009). S. Rajesh, K.P. Murali, and R. Ratheesh, Preparation and characterization of high permittivity and low loss PTFE/CaTiO3 microwave laminates. Polym. Compos. 30, 1480 (2009). Y. Hu, Y. Zhang, H. Liu, and D. Zhou, Microwave dielectric properties of PTFE/CaTiO3 polymer ceramic composites. Ceram. Int. 37, 1609 (2011). V. Drishya, A.N. Unnimaya, R. Naveenraj, E.K. Suresh, and R. Ratheesh, Preparation, characterization, and dielectric properties of PP/CaTiO3 composites for microwave substrate applications. Int. J. Appl. Ceram. Technol. 13, 810 (2016). J. Chameswary and M.T. Sebastian, Butyl rubber–Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applications. Ceram. Int. 39, 2795 (2013). H. Wang, H. Yang, J. Tong, and Q. Zhang, Medium dielectric constant and low-loss PTFE composites filled with MgO-LiF co-doped Li2TiO3 particles. J. Appl. Polym. Sci. 136, 47980 (2019). Standard Test Methods for Loss-On-Drying by Thermogravimetry, https://www.astm.org/e1868-10r21.html Z. Li, Y. Yuan, M. Yao, L. Cao, B. Tang, and S. Zhang, Synthesis and characterization of PTFE/(NaxLi1−x)0.5Nd0.5TiO3 composites with high dielectric constant and high temperature stability for microwave substrate applications. Ceram. Int. 45, 22015 (2019). C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang, H. Guan, Y. Wu, and Y. Zhang, Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2906 (2022). H. Wang, F. Zhou, J. Guo, H. Yang, J. Tong, and Q. Zhang, Modified BCZN particles filled PTFE composites with high dielectric constant and low loss for microwave substrate applications. Ceram. Int. 46, 7531 (2020). F. Luo, B. Tang, Z. Fang, Y. Yuan, H. Li, and S. Zhang, Polytetrafluoroethylene based, F8261 modified realization of Li2SnMg0.5O3.5 filled composites. Appl. Surf. Sci. 503, 144088 (2020). H. Lin, Z. Weng, and Z. Xiong, Preparation and microwave dielectric properties of polyethylene/TiO2 composites. J. Electron. Mater. 48, 6771 (2019). T. Joseph, S. Uma, J. Philip, and J.P.M.T. Sebastian, Electrical and thermal properties of PTFE-Sr2ZnSi2O7 composites. J. Mater. Sci. Mater. Electron. 22, 1000 (2011). G. Subodh, C. Pavithran, P. Mohanan, and M.T. Sebastian, PTFE/Sr2Ce2Ti5O16 polymer ceramic composites for electronic packaging applications. J. Eur. Ceram. Soc. 27, 3039 (2007). L.K. Namitha, S. Ananthakumar, and M.T. Sebastian, Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications. J. Mater. Sci. Mater. Electron. 26, 891 (2015). S. Thomas, J. Kavil, and A. Mathew Malayil, Dielectric properties of PTFE loaded with micro- and nano-Sm2Si2O7 ceramics. J. Mater. Sci. Mater. Electron. 27, 9780 (2016). M. Lé-Magda, E. Dargent, B. Youssef, A. Guillet, J. Idrac, and J.M. Saiter, Thermal properties evolution of PCB FR4 epoxy composites for mechatronic during very long ageing. In Macromolecular Symposia, vol. 315, pp. 143–1515 (2012). H. Wang, Y. Yuan, Z. Chi, Z. Yang, E. Li, and B. Tang, Researches on silane coupling agent treated AlN ceramic powder and fabrication of AlN/PTFE composites for microwave substrate applications. J. Mater. Sci. Mater. Electron. 30, 20189 (2019). P.S. Anjana, S. Uma, J. Philip, and M.T. Sebastian, Thermal properties of low loss PTFE-CeO2 dielectric ceramic composites for microwave substrate applications. J. Appl. Polym. Sci. 118, 751 (2010). T.S. Sasikala and M.T. Sebastian, Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites. Ceram. Int. 42, 7551 (2016). A.A. Al-Ghamdi, O.A. Al-Hartomy, F.R. Al-Solamy, N.T. Dishovsky, P. Malinova, N.T. Atanasov, and G.L. Atanasova, Correlation between electrical conductivity and microwave shielding effectiveness of natural rubber based composites, containing different hybrid fillers obtained by impregnation technology. Mater. Sci. Appl. 07, 496 (2016). A.G. El-Shamy, Polyvinyl alcohol and silver decorated carbon quantum-dots for new nano-composites with application electromagnetic interface (EMI) shielding. Prog. Org. Coat. 146, 105747 (2020). A. Desai, T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications. Microw. Opt. Technol. Lett. 62, 2090 (2020). Z. Wu, K. Hjort, and S.H. Jeong, Microfluidic stretchable radio-frequency devices. Proc. IEEE 103, 1211 (2015). M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, and G.M. Whitesides, Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097 (2008). B. Tang, F. Luo, D. Zhou, Y. Yuan, and S. Zhang, Effects of CaTiO3 loading on the properties of PTFE/TiO2 composites. J. Mater. Sci. Chem. Eng. 05, 45 (2017). D. Thomas, C. Janardhanan, and M.T. Sebastian, Mechanically flexible butyl rubber–SrTiO3 composite dielectrics for microwave applications. Int. J. Appl. Ceram. Technol. 8, 1099 (2011). RT/duroid® 5870 - 5880 Data Sheet, https://www.rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-5870---5880-data-sheet.pdf TRF-41,-43,-45 Low-loss ceramic-filled PTFE, http://www.taconic.co.kr/english/download/TRF-41_TRF-43_TRF-45.pdf RT/duroid® 6006/6010LM Laminate Data Sheet, https://www.rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-6006-6010lm-laminate-data-sheet.pdf