Synthesis, Electrical Measurement, and Field Emission Properties of α-Fe2O3Nanowires

Nanoscale Research Letters - Tập 3 - Trang 330-337 - 2008
Li-Chieh Hsu1, Yuan-Yao Li1, Chun-Yen Hsiao2
1Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, R.O.C
2TECO Nanotech Co. Ltd, Taoyuan, R.O.C

Tóm tắt

α-Fe2O3nanowires (NWs) were formed by the thermal oxidation of an iron film in air at 350 °C for 10 h. The rhombohedral structure of the α-Fe2O3NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (D NWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800 nm and a diameter of 15 nm was measured to be 4.42 × 103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two-parallel-plate system. A low turn–on field of 3.3 V/μm and a large current density of 10−3 A/cm2(under an applied field of about 7 V/μm) can be obtained using optimal factors ofD NWsin the cathode.

Tài liệu tham khảo

Zhu YW, Yu T, Cheong FC, Xui XJ, Lim CT, Tan VBC, et al.: Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology 2005, 16: 88–92. COI number [1:CAS:528:DC%2BD2MXitVaksLk%3D] COI number [1:CAS:528:DC%2BD2MXitVaksLk%3D] 10.1088/0957-4484/16/1/018 Nilsson L, Groening O, Emmenegger C, Kuettel O, Schaller E, Schlapbach L, et al.: Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 2000, 76: 2071–2073. COI number [1:CAS:528:DC%2BD3cXitlSrsr0%3D] COI number [1:CAS:528:DC%2BD3cXitlSrsr0%3D] 10.1063/1.126258 Gao H, Mu C, Wang F, Xu DS, Wu K, Xie YC, et al.: Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. J. Appl. Phys. 2003, 93: 5602–5605. COI number [1:CAS:528:DC%2BD3sXjtVyisrk%3D] COI number [1:CAS:528:DC%2BD3sXjtVyisrk%3D] 10.1063/1.1564882 Bonard JM, Croci M, Arfaoui I, Noury O, Sarangi D, Chatelain A: Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters? Diam. Relat. Mater. 2002, 11: 763–768. COI number [1:CAS:528:DC%2BD38XjvVenur4%3D] COI number [1:CAS:528:DC%2BD38XjvVenur4%3D] 10.1016/S0925-9635(01)00541-6 Jo SH, Lao JY, Ren ZF, Farrer RA, Baldacchini T, Fourkas JT: Field-emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 2003, 83: 4821–4823. COI number [1:CAS:528:DC%2BD3sXps1Wmtrg%3D] COI number [1:CAS:528:DC%2BD3sXps1Wmtrg%3D] 10.1063/1.1631735 Zeng BQ, Xiong GY, Chen S, Wang WZ, Wang DZ, Ren ZF: Field emission of silicon nanowires grown on carbon cloth. Appl. Phys. Lett. 2007, 90: 033112–1-033112–3. Kim J, Anderson WA: Direct electrical measurement of the self-assembled nickel silicide nanowire. Nano Lett. 2006, 6: 1356–1359. COI number [1:CAS:528:DC%2BD28Xlt1yqsrs%3D] COI number [1:CAS:528:DC%2BD28Xlt1yqsrs%3D] 10.1021/nl0602894 Lee JS, Islam MS, Kim S: Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. Nano Lett. 2006, 6: 1487–1490. COI number [1:CAS:528:DC%2BD28XlsFarurY%3D] COI number [1:CAS:528:DC%2BD28XlsFarurY%3D] 10.1021/nl060883d Hernandez-Ramirez F, Tarancon A, Casals O, Pellicer E, Rodriguez J, Romano-Rodriguez A, et al.: Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Phys. Rev. B 2007, 76: 085429–085433. 10.1103/PhysRevB.76.085429 Seong HK, Kim JY, Kim JJ, Lee SC, Kim SR, Kim U, et al.: Room-temperature ferromagnetism in cu doped GaN nanomores. Nano Lett. 2007, 7: 3366–3371. COI number [1:CAS:528:DC%2BD2sXhtFSjt7nL] COI number [1:CAS:528:DC%2BD2sXhtFSjt7nL] 10.1021/nl0716552 Nebeschutz M, Cimalla V, Ambacher O, Machleidt T, Ristic J, Calleja E: Electrical performance of gallium nitride nanocolumns. Physica E 2007, 37: 200–203. 10.1016/j.physe.2006.10.007 Schlenker E, Bakin A, Postels B, Mofor AC, Wehmann HH, Weimann T, et al.: Electrical characterization of ZnO nanorods. Physica E 2007, 244: 1473–1477. COI number [1:CAS:528:DC%2BD2sXht1CrsbfI] COI number [1:CAS:528:DC%2BD2sXht1CrsbfI] Adeyeye AO, White RL: Magnetoresistance behavior of single castellated Ni80Fe20 nanowires. J. Appl. Phys. 2004, 95: 2025–2028. COI number [1:CAS:528:DC%2BD2cXosVyjtQ%3D%3D] COI number [1:CAS:528:DC%2BD2cXosVyjtQ%3D%3D] 10.1063/1.1637726 Liu I, Wu YH, Long HH, Liu ZJ, Zheng YK, Adeyeye AO: Transport properties and micromagnetic modeling of magnetic nanowires with multiple constrictions. Thin Solid Films 2006, 505: 35–40. COI number [1:CAS:528:DC%2BD28XisF2jtbY%3D] COI number [1:CAS:528:DC%2BD28XisF2jtbY%3D] 10.1016/j.tsf.2005.10.034 Dieckmann R: Point-defects and transport in hematite (Fe2o3-Epsilon). Philos. Mag. A 1993, 68: 725–745. COI number [1:CAS:528:DyaK3sXmvVejtLo%3D] COI number [1:CAS:528:DyaK3sXmvVejtLo%3D] 10.1080/01418619308213994 Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL: Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 2006, 16: 2243–2251. COI number [1:CAS:528:DC%2BD28Xht1Onsr%2FO] COI number [1:CAS:528:DC%2BD28Xht1Onsr%2FO] 10.1002/adfm.200600499 17. L.-C. Hsu, Y.-Y. Li, C.G. Lo, C.W. Huang, G. Chern, Thermal growth and magnetic characterization of the a-Fe2O3 nanowires. J. Phys. D Appl. Phys. (2008) (accepted) Takagi R: J. Phys. Soc. Jpn.. 1957, 12: 1212–1218. COI number [1:CAS:528:DyaG1cXhsFamsw%3D%3D] COI number [1:CAS:528:DyaG1cXhsFamsw%3D%3D] 10.1143/JPSJ.12.1212 Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar A, et al.: Synthesis of large arrays of aligned alpha-Fe2O3 nanowires. Chem. Phys. Lett. 2003, 379: 373–379. COI number [1:CAS:528:DC%2BD3sXnsVelur0%3D] COI number [1:CAS:528:DC%2BD3sXnsVelur0%3D] 10.1016/j.cplett.2003.08.061 Burgess RE, Kroemer H, Houston JM: Corrected values of Fowler-Nordheim field emission functions V(Y) and S(Y). Phys. Rev. 1953, 90: 515–515. 10.1103/PhysRev.90.515 Bonard JM, Weiss N, Kind H, Stockli T, Forro L, Kern K, et al.: Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 2001, 13: 184–188. COI number [1:CAS:528:DC%2BD3MXhs12qu74%3D] COI number [1:CAS:528:DC%2BD3MXhs12qu74%3D] 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I