Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Truyền dẫn synap và tính biến đổi trong hạch hạnh nhân
Tóm tắt
Nhiều nghiên cứu trên chuột và con người chỉ ra tầm quan trọng của hạch hạnh nhân trong việc tiếp thu và diễn đạt nỗi sợ đã học. Việc xác định hạch hạnh nhân là một cơ sở thần kinh thiết yếu cho điều kiện hóa nỗi sợ đã cho phép thực hiện các nghiên cứu thần kinh sinh lý về các quá trình synap trong hạch hạnh nhân có thể làm trung gian cho điều kiện hóa nỗi sợ. Một cơ chế tế bào có thể cho điều kiện hóa nỗi sợ là sự tăng cường dài hạn (LTP), một sự gia tăng lâu dài trong truyền dẫn synap được gây ra bởi sự kích thích với tần số cao của các nhánh kích thích. Hiện tại, các cơ chế nền tảng cho việc tạo ra và diễn đạt LTP hạch hạnh nhân chỉ mới bắt đầu được hiểu, và có khả năng liên quan đến cả hai loại thụ thể glutamat N-methyl-d-aspartate (NMDA) và α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). Bài báo này sẽ xem xét các nghiên cứu gần đây về truyền dẫn synap và tính biến đổi trong hạch hạnh nhân nhằm hiểu mối quan hệ của các quá trình này với việc học tập và ghi nhớ những trải nghiệm tiêu cực.
Từ khóa
#hạch hạnh nhân #điều kiện hóa nỗi sợ #truyền dẫn synap #tính biến đổi #NMDA #AMPATài liệu tham khảo
Abe K., Nakata A., Mizutani A., and Saito H. (1994) Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo.Neuropharmacology 33, 847–852.
Applegate C. D., Frysinger R. C., Kapp B. S., and Gallagher M. (1982) Multiple unit activity recorded from amygdala central nucleus during Pavlovian heart rate conditioning in rabbit.Brain Res. 238, 457–462.
Asprodini E. K., Rainnie D. G., and Shinnick-Gallagher P. (1992) Epileptogenesis reduces the sensitivity of presynaptic GABAB receptors on glutamatergic afferents in the amygdala.J. Pharmacol. Exp. Ther. 262, 1011–1021.
Barrionuevo G. and Brown T. H. (1983) Associative long-term potentiation in hippocampal slices.Proc. Natl. Acad. Sci. USA 80, 7347–7351.
Bechara A., Tranel D., Damasio H., Adolphs R., Rockland C., and Damasio A. R. (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans.Science 269, 1115–1118.
Bernard J.-F., Alden M., and Besson J.-M. (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: aPhaseolus vulgaris leucoagglutinin (PHA-L) study in the rat.J. Comp. Neurol. 329, 201–229.
Bernard J. F. and Besson J. M. (1990) The spino (trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes.J. Neurophysiol. 63, 473–490.
Blanchard D. C. and Blanchard R. J. (1972) Innate and conditioned reactions to threat in rats with amygdaloid lesions.J. Comp. Physiol. Psychol. 81, 281–290.
Bliss T. V. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature (Lond.) 361, 31–39.
Brady J. V., Schreiner L., Geller I., and Kling A. (1954) Subcortical mechanisms in emotional behavior: the effect of rhinencephalic injury upon the acquisition and retention of a conditioned avoidance response in cats.J. Comp. Physiol. Psychol. 47, 179–186.
Brodal A. (1947) The amygdaloid nucleus in the rat.J. Comp. Neurol. 87, 1–16.
Brothers L. A. and Finch D. M. (1985) Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat.Brain Res. 359, 10–20.
Brown T. H., Chapman P. F., Kairiss E. W., and Keenan C. L. (1988) Long-term synaptic potentiation.Science 242, 724–728.
Brown T. H., Kairiss E. W., and Keenan C. L. (1990) Hebbian synapses: biophysical mechanisms and algorithms.Ann. Rev. Neurosci. 13, 475–511.
Campeau S. and Davis M. (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.J. Neurosci. 15, 2301–2311.
Campeau S., Miserendino M. J., and Davis M. (1992) Intra-amygdala infusion of theN-methyl-d-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus.Behav. Neurosci. 106, 569–574.
Canteras N. S. and Swanson L. W. (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat.J. Comp. Neurol. 324, 180–194.
Cassell M. D. and Gray T. S. (1989) Morphology of peptide-immunoreactive neurons in the rat central nucleus of the amygdala.J. Comp. Neurol. 281, 320–333.
Cassell M. D., Gray T. S., and Kiss J. Z. (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study.J. Comp. Neurol. 246, 478–499.
Chapman P. F. and Bellavance L. L. (1992) Induction of long-term potentiation in the basolateral amygdala does not depend on NMDA receptor activation.Synapse 11, 310–318.
Chapman P. F., Kairiss E. W., Keenan C. L., and Brown T. H. (1990) Long-term synaptic potentiation in the amygdala.Synapse 6, 271–278.
Clugnet M. C. and LeDoux J. E. (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body.J. Neurosci. 10, 2818–2824.
Clugnet M. C., LeDoux J. E., and Morrison S. F. (1990) Unit responses evoked in the amygdala and striatum by electrical stimulation of the medial geniculate body.J. Neurosci. 10, 1055–1061.
Davis M. (1992) The role of the amygdala in fear and anxiety.Ann. Rev. Neurosci. 15, 353–375.
Davis M., Rainnie D., and Cassell M. (1994) Neurotransmission in the rat amygdala related to fear and anxiety.Trends Neurosci. 17, 208–214.
Diamond D. M. and Rose G. M. (1994) Does associative LTP underlie classical conditioning?Psychobiol. 22, 263–269.
Fanselow M. S. (1993) Associations and memories: the role of NMDA receptors and long-term potentiation.Curr. Dir. Psychol. Sci.,2, 152–156.
Fanselow M. S. and Kim J. J. (1994) Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonistd,l-2-amino-5-phosphonovaleric acid to the basolateral amygdala.Behav. Neurosci. 108, 210–212.
Farb C. R., Aoki C., and LeDoux J. E. (1995) Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study.J. Comp. Neurol. 362, 86–108.
Fuster J. M. and Uyeda A. A. (1971) Reactivity of limbic neurons of the monkey to appetitive and aversive signals.Electroencephalo. Clin. Neurophysiol. 30, 281–293.
Gallistel C. R. (1995) Is long-term potentiation a plausible basis for memory?, inBrain and Memory: Modulation and Mediation of Neuroplasticity (McGaugh J. L., Weinberger N. M., and Lynch G., eds.), Oxford University Press, New York, pp. 328–337.
Gean P.-W. and Chang F.-C. (1992) Pharmacological characterization of excitatory synaptic potentials in rat basolateral amygdaloid neurons.Synapse 11, 1–9.
Gean P.-W., Huang C.-C., Lin J.-H., and Tsai J.-J. (1992) Sustained enhancement of NMDA receptor-mediated synaptic potential by isoproterenol in rat amygdalar slices.Brain Res. 594, 331–334.
Gean P. W., Chang, F. C., Huang C. C., Lin J. H., and Way L. J. (1993a) Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala.Brain Res. Bull. 31, 7–11.
Gean P. W., Chang F. C., and Hung C. R. (1993b) Use-dependent modification of a slow NMDA receptor-mediated synaptic potential in rat amygdalar slices.J. Neurosci. 34, 635–641.
Gean P. W. and Shinnick-Gallagher P. (1987) Picrotoxin induced epileptiform activity in amygdaloid neurons.Neurosci. Lett. 73, 149–154.
Groenewegen H. J. and Berendse H. W. (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei.Trends Neurosci. 17, 52–57.
Heth D. C. and Rescorla R. A. (1973) Simultaneous and backward fear conditioning in the rat.J. Comp. Physiol. Psychol. 82, 434–443.
Hitchcock J. and Davis M. (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm.Behav. Neurosci. 100, 11–22.
Huang C.-C. and Gean P.-W. (1994) Paired-pulse depression of theN-methyl-d-aspartate receptor-mediated synaptic potentials in the amygdala.Br. J. Pharmacol. 113, 1029–1035.
Huang C.-C., Hsu K.-S., and Gean P.-W. (1996) Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala.J. Neurosci. 16, 1026–1033.
Huang C.-C., Tsai J.-J., and Gean P.-W. (1994) Actions of isoproterenol on amygdalar neuronsin vitro.Clin. J. Physiol. 37, 73–78.
Iwata J., Chida K., and LeDoux J. E. (1987) Cardiovascular responses elicited by stimulation of the neurons in the central amygdaloid nucleus in the awake but not anesthetized rats resemble conditioned emotional responses.Brain Res. 418, 183–188.
Iwata J., LeDoux J. E., Meeley M. P., Arneric S., and Reis D. J. (1986) Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli.Brain Res. 383, 195–214.
Jerusalinsky D., Ferreira M. B., Walz R., Da Silva R. C., Bianchin M., Ruschel A. C., Zanatta M. S., Medina J. H., and Izquierdo I. (1992) Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex.Behav. Neural Biol. 58, 76–80.
Kapp B. S., Gallagher M., Underwood M. D., McNall C. L., and Whitehorn D. (1982) Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit.Brain Res. 234, 251–262.
Kapp B. S., Whalen P. J., Supple W. F., and Pascoe J. P. (1992) Amygdaloid contributions to conditioned arousal and sensory information processing, inThe Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (Aggleton J. P., ed.), Wiley-Liss, New York, pp. 229–254.
Kelley A. E., Domesick V. B., and Nauta J. H. (1982) The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods.Neuroscience 7, 615–630.
Kellicutt M. H. and Schwartzbaum J. S. (1963) Formation of a conditioned emotional response (CER) following lesions of the amygdaloid complex in rats.Psychol. Rep. 12, 351–358.
Kelso S. R., Ganong A. H., and Brown T. H. (1986) Hebbian synapses in hippocampus.Proc. Natl. Acad. Sci. USA 83, 5326–5330.
Kim M., Campeau S., Falls W. A., and Davis M. (1993) Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle.Behav. Neural Biol. 59, 5–8.
Kim M. and McGaugh J. L. (1992) Effects of intraamygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance.Brain Res. 585, 35–48.
Krettek J. E. and Price J. L. (1974) A direct input from the amygdala to the thalamus and cerebral cortex.Brain Res. 67, 169–174.
Krettek J. E. and Price J. L. (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in rat and cat.J. Comp. Neurol. 172, 687–722.
Krettek J. E. and Price J. L. (1978a) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat.J. Comp. Neurol. 178, 225–254.
Krettek J. E. and Price J. L. (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections.J. Comp. Neurol. 178, 255–279.
Le Gal La Salle G. and Ben-Ari Y. (1981) Unit activity in the amygdaloid complex: a review, inThe Amygdaloid Complex (Ben-Ari Y., ed.), Elsevier/ North Holland, Amsterdam, pp. 227–237.
LeDoux J. E. (1995) Emotion: clues from the brain.Ann. Rev. Psych. 46, 209–235.
LeDoux J. E., Cicchetti P., Xagoraris A., and Romanski L. M. (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning.J. Neurosci. 10, 1062–1069.
LeDoux, J. E., Farb C., and Ruggiero D. A. (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala.J. Neurosci. 10, 1043–1054.
LeDoux J. E. and Farb C. R. (1991) Neurons of the acoustic thalamus that project to the amygdala contain glutamate.Neurosci. Lett. 134, 145–149.
LeDoux J. E., Farb C. R., and Romanski L. M. (1991) Overlapping projections to the amygdala and striatum from auditory processing ares of the thalamus and cortex.Neurosci. Lett. 134, 139–144.
LeDoux J. E., Iwata J., Cicchetti P., and Reis D. J. (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear.J. Neurosci. 8, 2517–2529.
Li X. F., Phillips R., and LeDoux J. E. (1995) NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala.Exp. Brain. Res. 105, 87–100.
Liang K. C., Hon W., and Davis M. (1994) Pre- and posttraining infusion ofN-methyl-d-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task.Behav. Neurosci. 108, 241–253.
Liao D., Hessler N. A., and Malinow R. (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal sliceNature (Lond.) 375, 400–404.
Maren S., Aharonov G., and Fanselow M. S. (1996) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala in rats: absence of a temporal gradient.Behav. Neurosci., in press.
Maren S., Aharonov G., Stote D. L., and Fanselow M. S. (1997) N-methyl-d-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats.Behav. Neurosci., in press.
Maren S. and Baudry M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory.Neurobiol. Learn. Mem. 63, 1–18.
Maren S. and Fanselow M. S. (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulationin vivo.J. Neurosci. 15, 7548–7564.
Maren S. and Fanselow M. S. (1996) The amygdala and fear conditioning: Has the nut been cracked?Neuron 16, 237–240.
Maren S., Poremba A., and Gabriel M. (1991) Basolateral amygdaloid multi-unit neuronal cor-relates of discriminative avoidance learning in rabbits.Brain Res. 549, 311–316.
Maren S., Tocco G., Standley S., Baudry M., and Thompson R. F. (1993) Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP inductionin vivo.Proc. Natl. Acad. Sci. USA 90, 9554–9658.
McDonald A. J. (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat.J. Comp. Neurol. 222, 589–606.
McDonald A. J. (1985a) Immunohistochemical identification of GABA-containing neurons in the rat basolateral amygdala.Neurosci. Lett. 53, 203–207.
McDonald A. J. (1985b) Morphology of peptide-containing neurons in the rat basolateral amygdaloid nucleus.Brain Res. 338, 186–191.
McDonald A. J. (1989) Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala.Brain Res. 500 37–45.
McDonald A. J. (1994) Neuronal localization of glutamate receptor subunits in the basolateral amygdala.Neuroreport 6, 13–16.
McDonald A. J. and Pearson J. C. (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala.Neurosci. Lett. 100, 53–58.
McGaugh J. L. (1989) Involvement of hormonal and neuromodulatory systems in the regulation of memory storage.Ann. Rev. Neurosci. 12, 255–287.
Mello L. E., Tan A. M., and Finch D. M. (1992a) Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: anin vivo extra- and intracellular electrophysiological study.Brain Res. 587, 24–40.
Mello L. E., Tan A. M., and Finch D. M. (1992b) GABAergic synaptic transmission in projections from the basal forebrain and hippocampal formation to the amygdala: anin vivo iontophoretic study.Brain Res. 587, 41–48.
Miserendino M. J., Sananes C. B., Melia K. R., and Davis M. (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala.Nature (Lond.) 345, 716–718.
Morrison F. and Poletti C. E. (1980) Hippocampal influences on amygdala unit activity in awake squirrel monkeys.Brain Res. 192, 353–369.
Muramoto K., Ono T., Nishijo H., and Fukuda M. (1993) Rat amygdaloid neuron responses during auditory discrimination.Neuroscience 52, 621–636.
Nicoll R. A. and Malenka R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus.Nature (Lond.) 377, 115–118.
Norgren R. (1976) Taste pathways to hypothalamus and amygdala.J. Comp. Neurol. 166, 17–30.
Nose I., Higashi H., Inokuchi H., and Nishi S. (1991) Synaptic responses of guinea pig and rat central amygdala neuronsin vitro.J. Neurophysiol. 65, 1227–1241.
Ono T., Nishijo H., and Uwano T. (1995) Amygdala role in conditioned associative learning.Prog. Neurobiol. 46, 401–422.
Ottersen O. P. (1980) Afferent connections of the amygdaloid complex of the rat and cat: II. afferents from the hypothalamus and the basal telencephalon.J. Comp. Neurol. 194, 267–298.
Ottersen O. P. (1981) Afferent connections of the amygdaloid complex of the rat with some observations in the cat: III. afferents from the lower brain stem.J. Comp. Neurol. 202, 335–356.
Ottersen O. P. (1982) Connections of the amygdala of the rat. IV: corticoamygdaloid and intra-amygdaloid connections as studied with axonal transport of horseradish peroxidase.J. Comp. Neurol. 205, 30–48.
Ottersen P. P. and Ben-Ari Y. (1979) Afferent connections to the amygdaloid complex of the rat and cat.J. Comp. Neurol. 187, 401–424.
Pare D., Smith Y., and Pare J.-F. (1995) Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat:Phaseolus vulgaris-leucoagglutinin anterograde tracing at the light and electron microscopic level.Neurosci. 69, 567–583.
Pascoe J. P. and Kapp B. S. (1985) Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit.Behav. Brain Res. 16, 117–133.
Prelevic S., Burnham W. M., and Gloor P. (1976) A microelectrode study of amygdaloid afferents: temporal neocortex inputs.Brain Res. 105, 437–457.
Quirk G. J., Repa J. C., and LeDoux J. E. (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat.Neuron 15, 1029–1039.
Racine R. J. and Milgram N. W. (1983) Short-term potentiation phenomena in the rat limbic forebrain.Brain Res. 260, 201–216.
Racine R. J., Milgram N. W., and Hafner S. (1983) Long-term potentiation phenomena in the rat limbic forebrain.Brain Res. 260, 217–31.
Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1991a) Excitatory transmission in the basolateral amygdala.J. Neurophysiol. 66, 986–998.
Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1991b) Inhibitory transmission in the basolateral amygdala.J. Neurophysiol. 66, 999–1009.
Rainnie D. G., Asprodini E. K., and Shinnick-Gallagher P. (1993) Intracellular recordings from morphologically identified neurons of the basolateral amygdala.J. Neurophysiol. 69, 1350–1362.
Rainnie D. G., Fernhout B. J. H., and Shinnick-Gallagher P. (1992) Differential actions of corticotropin releasing factor on basolateral and central amygdaloid neurones,in vitro.J. Pharmacol. Exp. Ther. 263, 846–858.
Rainnie D. G., Holmes K. H., and Shinnick-Gallagher P. (1994) Activation of postsynaptic metabotropic glutamate receptors bytrans-ACPD hyperpolarizes neurons of the basolateral amygdala.J. Neurosci. 14, 7208–7220.
Rainnie D. G. and Shinnick-Gallagher P. (1992)trans-ACPD andl-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA)Neurosci. Lett. 139, 87–91.
Rizvi T. A., Ennis M., Behbehani M. M., and Shipley M. T. (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity.J. Comp. Neurol. 303, 121–131.
Rogan M. T. and LeDoux J. E. (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit.Neuron 15, 127–136.
Romanski L. M., Clugnet M. C., Bordi, F., and LeDoux J. E. (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala.Behav. Neurosci. 107, 444–450.
Sananes C. B. and Davis M. (1992)N-methyl-d-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle.Behav. Neurosci. 106, 72–80.
Sanghera M. K., Rolls E. T., and Roper-Hall A. (1979) Visual responses of neurons in the dorsolateral amygdala of the alert monkey.Exp. Neurol. 63, 610–626.
Sarter M. and Markowitsch H. J. (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations.Behav. Neurosci. 99, 342–380.
Schiess M. C., Asprodini E. K., Rainnie D. G., and Shinnick-Gallagher P. (1993) The central nucleus of the rat amygdala:in vitro intracellular recordings.Brain Res. 604, 283–297.
Shindou T., Watanabe S., Yamamoto, K., and Nakanishi H. (1993) NMDA receptor-dependent formation of long-term potentiation in the rat medial amygdala neuron in anin vitro slice preparation.Brain Res. Bull. 31, 667–672.
Smith Y. and Pare D. (1994) Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry.J. Comp. Neurol. 342, 232–248.
Sripanidkulchai K., Sripanidkulchai B., and Wyss J. M. (1984) The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study.J. Comp. Neurol. 229, 419–431.
Stefanacci L., Farb C. R., Pitkanen A., Go G., LeDoux J. E., and Amaral D. G. (1992) Projections from the lateral nucleus to the basal nucleus of the amygdala: a light and electron microscopic PHA-L study in the rat.J. Comp. Neurol. 323, 586–601.
Stringer J. L., Greenfield L. J., Hackett J. T., and Guyenet P. G. (1983) Blockade of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro.Brain Res. 280, 127–138.
Sugita S. and North R. A. (1993) Opioid actions on neurons of rat lateral amygdalain vitro.Brain Res. 612, 151–155.
Sugita S., Shen K.-Z., and North R. A. (1992) 5-Hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala.Neuron 8, 199–203.
Sugita S., Tanaka E., and North R. A. (1993) Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala.J. Physiol. (Lond.) 460, 705–718.
Sun N. and Cassell M. D. (1993) Intrinsic GABAergic neurons in the rat central extended amygdala.J. Comp. Neurol. 330, 381–404.
Sun N., Yi, H., and Cassell M. D. (1994) Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala.J. Comp. Neurol. 340, 43–64.
Turner B. H. and Herkenham M. (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing.J. Comp. Neurol. 313, 295–325.
Uwano T., Nishijo H., Ono T., and Tamure R. (1995) Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala.Neuroscience 68, 339–361.
Van Groen T. and Wyss J. M. (1990) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections.J. Comp. Neurol. 302, 515–528.
Veenig J. G. (1978a) Cortical afferents of the amygdaloid complex in the rat: an HRP study.Neurosci. Lett. 8, 191–195.
Veenig J. G. (1978b) Subcortical afferents of the amygdaloid complex in the rat: an HRP study.Neurosci. Lett. 8, 197–202.
Wang S.-J., Huang C.-C., and Gean P.-W. (1995) Tetrahydro-9-aminoacridine presynaptically inhibits glutamatergic transmission in the rat amygdala.Brain Res. Bull. 37, 325–327.
Washburn M. S. and Moises H. C. (1992a) Electrophysiological and morphological properties of rat basolateral amygdaloid neuronsin vitro.J. Neurosci. 12, 4066–4079.
Washburn M. S. and Moises H. C. (1992b) Inhibitory responses of rat basolateral amygdaloid neurons recordedin vitro.Neuroscience 50, 811–830.
Watanabe Y., Ikegaya Y., Saito H., and Abe K. (1995a) Roles of GABAA, NMDA and muscarinic receptors in the induction of long-term potentiation in the medial and lateral amygdalain vitro.Neurosci. Res. 21, 317–322.
Watanabe Y., Saito H., and Abe K. (1995b) Nitric oxide is involved in long-term potentiation in the medial but not lateral amygdala neuron synapsesin vitro.Brain Res. 688, 233–236.
Wigstrom H. and Gustafsson B. (1986) Postsynaptic control of hippocampal long-term potentiation.J. Physiol. (Lond.) 81, 228–236.
Womble M. D. and Moises H. C. (1992). Muscarinic inhibition of M-current and a potassium leak conductance in neurones of the rat basolateral amygdala.J. Physiol. 457, 93–114.
Womble M. D. and Moises H. C. (1993a) Hyperpolarization-activated currents in neurons of the rat basolateral amygdala.J. Neurophysiol. 70, 2056–2065.
Womble M. D. and Moises H. C. (1993b) Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala.Brain Res. 621, 87–96.
Wyss J. M. (1981) An autoradiographic study of the efferent connections of the entorhinal cortex in the rat.J. Comp. Neurol. 199, 495–512.
Yu B. and Shinnick-Gallagher P. (1994) Interleukin-1β inhibits synaptic transmission and induces membrane hyperpolarization in amygdala neurons.J. Pharmacol. Exp. Ther. 271, 590–600.
Zalutsky R. A. and Nicoll R. A. (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons.Science 248, 1619–1624.
Zucker R. S. (1989) Short-term synaptic plasticity.Ann. Rev. Neurosci. 12, 13–31.