Surface polar phonon dominated electron transport in graphene

Applied Physics Letters - Tập 97 Số 23 - 2010
X. Li1, Edwin Barry2, J. M. Zavada1, Marco Buongiorno Nardelli3,4, K. W. Kim1
1North Carolina State University 1 Department of Electrical and Computer Engineering, , Raleigh, North Carolina 27695-7911, USA
2US Army Research Laboratory 2 Weapons and Materials Research Directorate, , Aberdeen Proving Grounds, Maryland 21005-5069, USA
3North Carolina State University 3 Department of Physics, , Raleigh, North Carolina 27695-8202, USA and CSMD, , Oak Ridge, Tennessee 37831, USA
4Oak Ridge National Laboratory 3 Department of Physics, , Raleigh, North Carolina 27695-8202, USA and CSMD, , Oak Ridge, Tennessee 37831, USA

Tóm tắt

The effects of surface polar phonons on the electronic transport properties of monolayer graphene are studied by using a Monte Carlo simulation. Specifically, the low-field electron mobility and saturation velocity are examined for different substrates (SiC, SiO2, and HfO2) in comparison to the intrinsic case. While the results show that the low-field mobility can be substantially reduced by the introduction of surface polar phonon scattering, corresponding degradation of the saturation velocity is not observed for all three substrates at room temperature. It is also found that surface polar phonons can influence graphene’s electrical resistivity even at low temperature, leading potentially to inaccurate estimation of the acoustic phonon deformation potential constant.

Từ khóa


Tài liệu tham khảo

2004, Science, 306, 666, 10.1126/science.1102896

2009, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

2008, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024

2010, Nat. Nanotechnol., 5, 487, 10.1038/nnano.2010.89

2008, Nat. Nanotechnol., 3, 206, 10.1038/nnano.2008.58

2008, Phys. Rev. B, 77, 195415, 10.1103/PhysRevB.77.195415

2010, Phys. Rev. B, 82, 115452, 10.1103/PhysRevB.82.115452

2010, Phys. Rev. B, 81, 195442, 10.1103/PhysRevB.81.195442

2008, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268

2009, Appl. Phys. Lett., 95, 023120, 10.1063/1.3182740

2009, Phys. Rev. Lett., 103, 076601, 10.1103/PhysRevLett.103.076601

2010, Phys. Rev. Lett., 104, 236601, 10.1103/PhysRevLett.104.236601

2010, Phys. Rev. B, 81, 121412, 10.1103/PhysRevB.81.121412

2010, Appl. Phys. Lett., 97, 082101, 10.1063/1.3483612

2007, Phys. Rev. B, 75, 205418, 10.1103/PhysRevB.75.205418

2008, Phys. Rev. B, 77, 115449, 10.1103/PhysRevB.77.115449

2009, Phys. Rev. Lett., 102, 136808, 10.1103/PhysRevLett.102.136808