Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering

Surface and Interface Analysis - Tập 31 Số 10 - Trang 954-965 - 2001
Leeor Kronik1, Yoram Shapira1
1Department of Physical Electronics, Tel-Aviv University, Ramat-Aviv 69978, Israel

Tóm tắt

Abstract

The possibility of obtaining a detailed picture of the electronic structure makes surface photovoltage spectroscopy (SPS) eminently suitable for bridging the gap between the chemical, physical, optical and electrical properties of semiconductors. In SPS, changes in band bending (both at the free semiconductor surface and at buried interfaces) are monitored as a function of external illumination. Surface photovoltage spectroscopy can provide detailed, quantitative information on bulk properties (e.g. bandgap and type, carrier diffusion length and lifetime) and can be used for complete construction of surface and interface band diagrams, including the measurement of energy levels in quantum structures. A particular strength is that a comprehensive analysis of surface and bulk defect state distributions and properties is made possible. Measurements using SPS are contactless and non‐destructive. In addition, they can be performed both in situ and ex situ, at any reasonable temperature, on any semiconducting material, at any ambient and at any lateral resolution down to the atomic scale. This review starts with an overview of SPS‐related surface and interface theory, describes the SPS experimental set‐up and presents applications for surface and interface characterization of a wide variety of materials and structures, cross‐correlating them with other methodologies. Copyright © 2001 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/j.1538-7305.1953.tb01420.x

10.1016/S0167-5729(99)00002-3

10.1116/1.1317922

10.1016/0039-6028(75)90233-2

10.1103/PhysRevB.29.6824

10.1016/0039-6028(73)90302-6

10.1016/0039-6028(80)90574-9

10.1016/0039-6028(75)90036-9

10.1103/PhysRevB.15.865

10.1063/1.362535

10.1063/1.117708

10.1063/1.116217

10.1016/S0038-1098(97)00114-2

10.1016/S0927-0248(97)00205-5

10.1063/1.121936

10.1063/1.126869

Many A, 1971, Semiconductor Surfaces

10.1007/978-3-662-02882-7

10.1007/978-3-662-10159-9

Sze SM, 1981, Physics of Semiconductor Devices

10.1109/16.34241

10.1016/S0169-4332(96)00121-3

10.1063/1.371562

Wolfe CM, 1989, Physical Properties of Semiconductors

10.1063/1.1134750

10.1063/1.1142075

10.1143/JJAP.21.624

10.1088/0022-3727/16/6/017

10.1063/1.1148251

Bonnell DA, 1993, Scanning Tunneling Microscopy and Spectroscopy

10.1103/PhysRevLett.64.1051

10.1103/PhysRevLett.65.456

10.1116/1.585424

10.1080/01442350050020897

10.1103/PhysRevB.61.11041

10.1063/1.125039

10.1063/1.348712

10.1149/1.2127325

10.1063/1.120322

10.1021/la990116c

10.1016/0039-6028(91)90112-6

10.1002/pssa.2210200103

10.1103/PhysRevB.55.R1930

10.1557/PROC-482-573

10.1149/1.1838552

10.1080/10408437508243484

10.1103/PhysRevB.18.2431

Musatov AL, 1989, Sov. Phys. Semicond., 23, 1271

Bednyi BI, 1992, Sov. Phys. Semicond., 26, 1115

10.1063/1.118733

10.1021/ja9906150

10.1063/1.1150030

10.1116/1.571055

10.1016/0039-6028(80)90389-1

10.1016/0368-2048(90)80338-B

10.1016/0039-6028(89)90517-7

10.1103/PhysRevB.21.625

10.1021/la981459y

10.1007/BF00617963

10.1088/0268-1242/8/9/009

10.1016/0042-207X(94)00116-2

10.1063/1.49432

10.1016/0040-6090(94)05609-H

10.1063/1.360425

10.1063/1.121527

10.1016/S0921-4526(99)00611-0

Bednyi BI, 1991, Sov. Phys. Semicond., 25, 874

10.1063/1.370180

Karpovich IA, 1990, Sov. Phys. Semicond., 24, 1346

10.1116/1.586203

10.1063/1.366807

10.1016/S0921-5107(00)00618-8

10.1103/PhysRevB.59.9748

10.1103/PhysRevB.61.15573

10.1063/1.1288813

10.1063/1.103665

10.1016/0042-207X(94)00113-8

10.1063/1.1330553