Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

Saeed Manoochehri1, Behrad Darvishi1, Golnaz Kamalinia2, Mohsen Amini3, Masoomeh Fallah4, Seyed Nasser Ostad5, Fatemeh Atyabi2, Rassoul Dinarvand2
1Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
2Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
3Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4Arash Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
5Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

Abstract Background

Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues.

Methods

PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells.

Results

Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg).

Conclusion

In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may represent a promising drug delivery system in cancer therapy.

Từ khóa


Tài liệu tham khảo

Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011, 6: 877-

Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V: PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012, 161: 505-522. 10.1016/j.jconrel.2012.01.043.

Chung YI, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC: The effect of surface functionalization of PLGA nanoparticles by heparin-or chitosan-conjugated Pluronic on tumor targeting. J Control Release. 2010, 143: 374-382. 10.1016/j.jconrel.2010.01.017.

Park J, Mattessich T, Jay SM, Agawu A, Saltzman WM, Fahmy TM: Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J Control Release. 2011, 156: 109-115. 10.1016/j.jconrel.2011.06.025.

Kratz F: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008, 132: 171-183. 10.1016/j.jconrel.2008.05.010.

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000, 65: 271-284. 10.1016/S0168-3659(99)00248-5.

Taheri A, Atyabi F, Nouri FS, Ahadi F, Derakhshan MA, Amini M, Ghahremani MH, Ostad SN, Mansoori P, Dinarvand R: Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomaterials. 2011, 2011: 5-

Sahoo SK, Labhasetwar V: Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm. 2005, 2: 373-383. 10.1021/mp050032z.

Shah N, Chaudhari K, Dantuluri P, Murthy R, Das S: Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic® P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target. 2009, 17: 533-542. 10.1080/10611860903046628.

Mo Y, Lim LY: Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release. 2005, 108: 244-262. 10.1016/j.jconrel.2005.08.013.

Bazile D, Ropert C, Huve P, Verrecchia T, Mariard M, Frydman A, Veillard M, Spenlehauer G: Body distribution of fully biodegradable [14C]-poly (lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials. 1992, 13: 1093-1102. 10.1016/0142-9612(92)90142-B.

Esmaeili F, Dinarvand R, Ghahremani MH, Ostad SN, Esmaily H, Atyabi F: Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly (lactide-co-glycolide) nanoparticles. Anticancer Drugs. 2010, 21: 43-10.1097/CAD.0b013e328331f934.

Esmaeili F, Hosseini-Nasr M, Rad-Malekshahi M, Samadi N, Atyabi F, Dinarvand R: Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine. 2007, 3: 161-167. 10.1016/j.nano.2007.03.003.

D’Souza SS, DeLuca PP: Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 2005, 6: E323-E328. 10.1208/pt060242.

He C, Hu Y, Yin L, Tang C, Yin C: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010, 31: 3657-3666. 10.1016/j.biomaterials.2010.01.065.

Manchanda R, Fernandez-Fernandez A, Nagesetti A, McGoron AJ: Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf B Biointerfaces. 2010, 75: 260-267. 10.1016/j.colsurfb.2009.08.043.

Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y: Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release. 1993, 25: 89-98. 10.1016/0168-3659(93)90097-O.

Feng L, Wu H, Ma P, Mumper RJ, Benhabbour SR: Development and optimization of oil-filled lipid nanoparticles containing docetaxel conjugates designed to control the drug release rate in vitro and in vivo. Int J Nanomedicine. 2011, 6: 2545-

Zaske L, Perrin MA, Leveiller F: Docetaxel: solid state characterization by X-ray powder diffraction and thermogravimetry. Le Journal de Physique IV. 2001, 11: Pr20-221-Pr210-226.

Budhian A, Siegel SJ, Winey KI: Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007, 336: 367-375. 10.1016/j.ijpharm.2006.11.061.

Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S: PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2008, 350: 320-329. 10.1016/j.ijpharm.2007.08.034.

Mainardes RM, Evangelista RC: PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005, 290: 137-144. 10.1016/j.ijpharm.2004.11.027.

Quintanar-Guerrero D, Fessi H, Allemann E, Doelker E: Influence of stabilizing agents and preparative variables on the formation of poly (D, L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm. 1996, 143: 133-141. 10.1016/S0378-5173(96)04697-2.

Chen H, Yang W, Liu L, Gao F, Yang X, Jiang Q, Zhang Q, Wang Y: Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids Surf B Biointerfaces. 2009, 73: 212-218. 10.1016/j.colsurfb.2009.05.020.

Misra R, Sahoo SK: Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci. 2010, 39: 152-163. 10.1016/j.ejps.2009.11.010.

Hu Y, Xie J, Tong YW, Wang CH: Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release. 2007, 118: 7-17. 10.1016/j.jconrel.2006.11.028.

Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R: PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm. 2008, 349: 249-255. 10.1016/j.ijpharm.2007.07.038.

Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G: PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006, 325: 172-179. 10.1016/j.ijpharm.2006.06.023.

Yallapu MM, Gupta BK, Jaggi M, Chauhan SC: Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010, 351: 19-29. 10.1016/j.jcis.2010.05.022.

Magenheim B, Levy M, Benita S: A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int J Pharm. 1993, 94: 115-123. 10.1016/0378-5173(93)90015-8.

Yoo HS, Oh JE, Lee KH, Park TG: Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res. 1999, 16: 1114-1118. 10.1023/A:1018908421434.

Senthilkumar M, Mishra P, Jain NK: Long circulating PEGylated poly (D, L-lactide-co-glycolide) nanoparticulate delivery of Docetaxel to solid tumors. J Drug Target. 2008, 16: 424-435. 10.1080/10611860802088598.

Panyam J, Labhasetwar V: Dynamics of endocytosis and exocytosis of poly (D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2003, 20: 212-220. 10.1023/A:1022219003551.