Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid

Journal of Biomedical Materials Research - Part A - Tập 81A Số 1 - Trang 124-134 - 2007
Thi Thi Nge1, Junji Sugiyama1
1Laboratory of Biomass Morphogenesis and Information, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Tóm tắt

AbstractThe apatite forming ability of biopolymer bacterial cellulose (BC) has been investigated by soaking different BC specimens in a simulated body fluid (1.5 SBF) under physiological conditions, at 37°C and pH 7.4, mimicking the natural process of apatite formation. From ATR‐FTIR spectra and ICP‐AES analysis, the crystalline phase nucleated on the BC microfibrils surface was calcium deficient carbonated apatite through initial formation of octacalcium phosphate (OCP) or OCP like calcium phosphate phase regardless of the substrates. Morphology of the deposits from SEM, FE‐SEM, and TEM observations revealed the fine structure of thin film plates uniting together to form apatite globules of various size (from <1 μm to 3 μm) with respect to the substrates. Surface modification by TEMPO (2,2,6,6‐tetramethylpyperidine‐1‐oxyl)‐mediated oxidation, which can readily form active carboxyl functional groups upon selective oxidation of primary hydroxyl groups on the surface of BC microfibrils, enhanced the rate of apatite nucleation. Ion exchanged treatment with calcium chloride solution after TEMPO‐mediated oxidation was found to be remarkably different from other BC substrates with the highest deposit weight and the smallest apatite globules size. The role of BC substrates to induce mineralization rate differs according to the nature of the BC substrates, which strongly influences the growth behavior of the apatite crystals. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2007

Từ khóa


Tài liệu tham khảo

10.1016/0142-9612(91)90194-F

10.1142/2028

Kokubo T, 1993, Bone‐Bonding Biomaterials, 31

10.1016/S0142-9612(01)00188-0

10.1002/jbm.a.10414

10.1002/jbm.a.10456

10.1557/JMR.2002.0104

10.1002/jbm.10045

10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B

10.1002/1097-4636(200110)57:1<119::AID-JBM1150>3.0.CO;2-P

10.1002/(SICI)1097-4636(19970305)34:3<305::AID-JBM5>3.0.CO;2-O

10.1016/S0079-6700(01)00021-1

10.1016/S0141-3910(97)00197-3

10.1042/bj0580345

10.1007/BF01139032

10.1016/j.biomaterials.2005.07.035

10.1016/j.biomaterials.2004.02.049

10.1021/bm0497769

10.1021/ma048396c

10.1016/j.carbpol.2005.04.009

10.1002/jbm.820240607

10.1007/BF02555847

10.1007/BF02553704

10.1007/BF02556215

10.1007/BF02556059

10.1006/jcis.2001.7617

10.1007/s002239900086

10.1073/pnas.94.17.9091

10.1021/ma00009a050

10.1002/jbm.10280

10.1016/0022-1902(70)80590-5

10.1002/jbm.a.10291

10.1016/S8756-3282(99)00145-3

10.1021/cm00034a009

10.1126/science.153.3743.1523

10.1007/BF02196214

10.1107/S0907444998005769