Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore
Tóm tắt
For the enhancement of lipase stability in organic solvent containing reaction, live immobilization method, using Bacillus subtilis spore as a display vehicle was attempted. Bacillus subtilis coat protein cotE was used as an anchoring motif for the display of lipA and lipB of Bacillus subtilis. Using this motif, lipolytic enzyme Lipase A and Lipase B were functionally displayed on the surface of Bacillus subtilis spore. Purified spore displaying CotE-LipB fusion protein showed higher lipolytic activity compared to that of CotE-LipA fusion protein. The surface localization of Lipase B was verified with flow cytometry and protease accessibility experiment. Spore displayed lipase retained its activity against acetone and benzene which completely deactivated free soluble lipase in the same reaction condition.
Tài liệu tham khảo
Kumar, A., K. Dhar, S. S. Kanwar, and P. K. Arora (2016) Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 18: 2.
Cowan, D. (1996) Industrial enzyme technology. Trends Biotecchnol. 14: 177–178.
Ueda, M. (2016) Establishment of cell surface engineering and its development. Biosci. Biotechnol. Biochem. 80: 1243–1253.
Boder, E. T. and K. D. Wittrup (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553–558.
Jung, H. C., J. M. Lebeault, and J. G. Pan (1998) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576–580.
Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997) Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984–987.
Sousa C., A. Cebolla, and V. de Lorenzo (1994) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14: 1017–1020.
Georgiou G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss 3rd (1997) Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29–34.
Kim, J. H., C. S. Lee, and B. G. Kim (2005) Spore-displayed streptavidin: A live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210–214.
Kim, J. H., C. Roh, C. W. Lee, D. Kyung, S. K. Choi, H. C. Jung, J. G. Pan, and B. G. Kim (2007) Bacterial surface display of GFPUV on Bacillus subtilis spores. J. Microbiol. Biotechnol. 17: 677–680.
Kim, J. H. (2009) Method for expression of proteins on spore surface. US Patent, 7,582,426 B2.
Kim, J. H. and W. Schumann (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol. Life Sci. 66: 3127–3136.
Hwang, B. Y., B. G. Kim and J. H. Kim (2011). Bacterial surface display of co-factor containing enzyme, w-transaminase from Vibrio fluvialis using Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862–1865.
Hwang, B. Y., J. G. Pan, B. G. Kim and J. H. Kim (2013) Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313–2319.
Richter, A., W. Kim, J. H. Kim, and W. Schumann (2015) Disulfide bonds of proteins displayed on spores of Bacillus subtilis can occur spontaneously. Curr. Microbiol. 71: 156–161.
Hosseini-Abari, A., B. G. Kim, S. H. Lee, G. Emtiazi, W. Kim, and J. H. Kim (2016) Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331–1337.
Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115–120.
Washida, M., S. Takahashi, M. Ueda, and A. Tanaka (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681–686.
Kobayashi, G., J. Toida, T. Akamatsu, H. Yamamoto, T. Shida, and J. Sekiguchi (2000) Accumulation of an artificial cell wall-binding lipase by Bacillus subtilis wprA and/or sigD mutants. FEMS Microbiol. Lett. 188: 165–169.
Lee, S. H., J. I. Choi, S. J. Park, S. Y. Lee, and B. C. Park (2004) Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl. Environ. Microbiol. 70: 5074–5080.
Haima, P., D. van Sinderen, H. Schotting, S. Bron, and G. Venema (1990) Development of a beta-galactosidase alphacomplementation system for molecular cloning in Bacillus subtilis. Gene 86: 63–69.
Dartois V., A. Baulard, K. Schanck, and C. Colson (1992) Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim. Biophys. Acta 1131: 253–260.
Eggert T., G. Pencreac'h, I. Douchet, R. Verger, and K. E. Jaeger (2000) A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 267: 6459–6469.
Eggert, T., G. van Pouderoyen, B. W. Dijkstra, and K. E. Jaeger (2001) Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett. 502: 89–92.
Van Pouderoyen, G., T. Eggert, K. E. Jaeger, and B. W. Dijkstra (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J. Mol. Biol. 309: 215–226.
Li, L., D. G. Kang, and H. Cha (2004) Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214–221.
Kwon, S. J., H. C. Jung, and J. G. Pan (2007) Transgalactosylation in a water-solvent biphasic reaction system with beta-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251–2256.