Sur les bornes d'erreur a posteriori pour les éléments propres d'opérateurs linéaires

Springer Science and Business Media LLC - Tập 32 - Trang 233-246 - 1979
Françoise Chatelin1
1Mathématiques Appliquées, Université de Grenoble, Grenoble cédex, France

Tóm tắt

The theoretical framework of this study is presented in Sect. 1, with a review of practical numerical methods. The linear operatorT and its approximationT n are defined in the same Banach space, which is a very common situation. The notion of strong stability forT n is essential and cannot be weakened without introducing a numerical instability [2]. IfT (or its inverse) is compact, most numerical methods are strongly stable. Without compactness forT(T −1) they may not be strongly stable [20]. In Sect. 2 we establish error bounds valid in the general setting of a strongly stable approximation of a closedT. This is a generalization of Vainikko [24, 25] (compact approximation). Osborn [19] (uniform and collectivity compact approximation) and Chatelin and Lemordant [6] (strong approximation), based on the equivalence between the eigenvalues convergence with preservation of multiplicities and the collectively compact convergence of spectral projections. It can be summarized in the following way: λ, eigenvalue ofT of multiplicitym is approximated bym numbers,λ n is their arithmetic mean.λ-λ n and the gap between invariant subspaces are of orderε n =‖(T-T n)‖P. IfT n * converges toT *, pointwise inX *, the principal term in the error on ∣λ-λ n ∣ is $$\frac{1}{m}|tr (T - T_n )P|$$ . And for projection methods, withT n=π n T, we get the bound $$|tr (T - T_n )P| \leqq C ||(1 - \pi _n )P|| ||(1 - \pi _n^* )P*||$$ . It applies to the finite element method for a differential operator with a noncompact resolvent. Aposteriori error bounds are given, and thegeneralized Rayleigh quotient $$\frac{1}{m}tr TP_n $$ TP n appears to be an approximation of λ of the second order, as in the selfadjoint case [12]. In Sect. 3, these results are applied to the Galerkin method and its Sloan variant [22], and to approximate quadrature methods. The error bounds and the generalized Rayleigh quotient are numerically tested in Sect. 4.

Tài liệu tham khảo

Anselone, P.M.: Collectively compact operator approximation theory. Prentice Hall (1971) Chatelin, F.: Convergence of approximation methods to compute eigenelements of linear operators. SIAM J. Num. Anal.10, 939–948 (1973) Chatelin-Laborde, F.: Approximation spectrale d'un opérateur borné par la méthode de Galerkin et la variante de Sloan. CRAS, ser. A, t.284, 1069–1072 (1977) Chatelin, F.: Approximation numérique des éléments propres d'opérateurs linéaires. R.R. No 73, Labo. Math. Appli., Université de Grenoble (1977) Chatelin, F.: Numerical computation of the eigenelements of linear integral opertors by iterations. SIAM J. Num. Anal.15, 1112–1124 (1978) Chatelin, F., Lemordant, J.: Error bounds in the approximation of the eigenvalues of differential and integral operators. J. Math. Anal. Appl.62, 257–271 (1978) Descloux, J., Nassif, N., Rappaz, J.: Spectral approximation with error bounds for non compact operators. Rapport EPF Lausanne, (mars 1977) Fiedler, M., Ptak, V.: Some estimates and iteration procedures for the spectrum of an almost decomposable matrix. Czech. Math. J.89, 593–608 (1964) Grigorieff, R.D.: Die Konvergenz des Rand- und Eigenwertproblems linearer gewöhnlicher Differenzengleichungen. Num. Math.15, 15–48 (1970) Grigorieff, R.D.: Diskrete Approximation von Eigenwertproblemen 1. Qualitative Konvergenz. Num. Mat.24, 355–374 (1975) Grigorieff, R.D., Jeggle, H.: Approximation von Eigenwertproblemen bei nichtlinearer Parameterabhängigkeit. Manuscr. mat.,10, 245–271 (1973) Kato, T.: On the upper and lower bounds for eigenvalues. J. Phys. Soc. Japan4, 334–339 (1949) Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math.6, 261–322 (1958) Kato, T.: Perturbation theory for linear operators. Springer-Verlag (1966) Kreiss, H.O.: Difference approximation for boundary and eigenvalue problems for ordinary differential equations. Math. Comp.26, 605–624 (1972) Lemordant, J.: Localisation et groupage de valeurs propres. Colloque d'Analyse Numérique. Imbours, (juin 1977) Linz, P.: On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations. Math. Comp.24, 905–909 (1970) Mills, W.H.: Optimal error estimates for the finite element spectral approximation of noncompact operators. SIAM J. Num. Anal. (1979) Osborn, J.E.: Spectral approximation for compact operators. Math. Comp.29, 712–725 (1975) Rappaz, J.: Approximation par la méthode des éléments finis du spectre d'un opérateur non compact donné par la stabilité magnétohydrodynamique d'un plasma. Thèse EPF Lausanne (1976) Redont, P.: Calcul de valeurs propres d'opérateurs linéaires compacts. Rapport de D.E.A., Université de Grenoble (1977) Sloan, I.H.: Iterated Galerkin method for eigenvalue problems. SIAM J. Num. Anal.13, 753–760 (1976) Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Annal.190, 45–92 (1970) Vainikko, G.M.: On the rate of convergence of approximate methods in the eigenvalue problem. Zh. Vychisl. Mat. mat. Fiz. vn7,o 5 (1967) Vainikko, G.M.: The compact approximation principle in the theory of approximation methods. ibidem9, 739–761 (1969) Vainikko, G.M.: A difference method for ordinary differential equations. ibidem9, 1057–1074 (1969) Vainikko, G.M.: The connection between mechanical quadrature and finite difference methods. ibidem9, 259–270 (1969) Vainikko, G.M.: Analyse des méthodes de discrétisation (en russe). Rapport Université de Tartu, Esthonie (1976) Vainikko, G.M.: Funktionalanalysis der Diskretizierungsmethoden. Leipzig: Teubner Verlag 1976 Vogelius, M.: Manuscrit non publié, Université du Maryland (1977) Wilkinson, J.H.: The algebraic eigenvalue problem. Clarendon Press, 1965