Suppressive Activities of Fisetin on Particulate Matter-induced Oxidative Stress

Springer Science and Business Media LLC - Tập 26 - Trang 568-574 - 2021
Hyunchae Sim1, Yeeun Noh1, Samyeol Choo1, Nayeon Kim1, Taeho Lee1, Jong-Sup Bae1
1College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea

Tóm tắt

Exposure to high levels of atmospheric particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) causes respiratory injury mainly due to oxidative stress. Although the fisetin has biological activities such as the antiviral, neuroprotective, and anti-inflammatory activities, the effect of fisetin on PM-mediated oxidative damage has not been studied. In this study, we tested the protective effect of fisetin against PM2.5-induced toxicity in human pulmonary artery endothelial cells (HPAECs) and its molecular mechanism. Exposure to PM2.5 decreased cell viability in HPAECs in a time- and dose-dependent manner, possibly due to increased release of extracellular lactate dehydrogenase and generation of intracellular reactive oxygen species (ROS). Cell viability assay demonstrated that treatment of HPAECs with fisetin increased cell viability and reduced PM2.5-induced oxidative stress in a dose-dependent manner. Serum- and glucocorticoid-inducible kinase 1 (SGK1), a crucial cell survival factor, was downregulated by PM2.5 which was recovered by fisetin. Furthermore, fisetin treatment inhibited intracellular ROS in HPAECs generated by PM2.5. Moreover, decreased antioxidant enzymes activities of superoxide dismutase and catalase level in PM2.5-treated cells were reversed by fisetin treatment. Our results suggest that fisetin effectively protects human HPAECs from PM2.5-induced oxidative damage via antioxidant effects.

Tài liệu tham khảo

Kim, K. H., E. Kabir, and S. Kabir (2015) A review on the human health impact of airborne particulate matter. Environ. Int. 74: 136–143. Maier, K. L., F. Alessandrini, I. Beck-Speier, T. P. J. Hofer, S. Diabate, E. Bitterle, T. Stoger, T. Jakob, H. Behrendt, M. Horsch, J. Beckers, A. Ziesenis, L. Hultner, M. Frankenberger, S. Krauss-Etschmann, and H. Schulz (2008) Health effects of ambient particulate matter—biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhal. Toxicol. 20: 319–337. Brunekreef, B. and S. T. Holgate (2002) Air pollution and health. Lancet. 360: 1233–1242. Liu, C. W., T. L. Lee, Y. C. Chen, C. J. Liang, S. H. Wang, J. H. Lue, J. S. Tsai, S. W. Lee, S. H. Chen, Y. F. Yang, T. Y. Chuang, and Y. L. Chen (2018) PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-kappaB-dependent pathway. Part. Fibre. Toxicol. 15: 4. Park, H. J., B. T. Jeon, H. C. Kim, G. S. Roh, J. H. Shin, N. J. Sung, J. Han, and D. Kang (2012) Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction. Acta. Physiol. (Oxf). 205: 61–70. Persson, P. B. and A. B. Persson (2012) Age your garlic for longevity! Acta. Physiol. (Oxf). 205: 1–2. Middleton, E. Jr. and G. Drzewiecki (1984) Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem. Pharmacol. 33: 3333–3338. Mukaida, N. (2000) Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72: 391–398. Hirano, T., S. Higa, J. Arimitsu, T. Naka, A. Ogata, Y. Shima, M. Fujimoto, T. Yamadori, T. Ohkawara, Y. Kuwabara, M. Kawai, H. Matsuda, M. Yoshikawa, N. Maezaki, T. Tanaka, I. Kawase, and T. Tanaka (2006) Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem. Biophys. Res. Commun. 340: 1–7. Bakay, M., I. Mucsi, I. Beladi, and M. Gabor (1968) Effect of flavonoids and related substances. II. Antiviral effect of quercetin, dihydroquercetin and dihydrofisetin. Acta Microbiol. Acad. Sci. Hung. 15: 223–227. Sung, B., M. K. Pandey, and B. B. Aggarwal (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol. 71: 1703–1714. Akaishi, T., T. Morimoto, M. Shibao, S. Watanabe, K. Sakai-Kato, N. Utsunomiya-Tate, and K. Abe (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci. Lett. 444: 280–285. Kim, J. E., W. Lee, S. Yang, S. H. Cho, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53. Lee, B. S., C. Lee, S. Yang, S. K. Ku, and J. S. Bae (2019) Renal protective effects of zingerone in a mouse model of sepsis. BMB Rep. 52: 271–276. Bergvall, C. and R. Westerholm (2006) Determination of dibenzopyrenes in standard reference materials (SRM) 1649a, 1650, and 2975 using ultrasonically assisted extraction and LC-GC-MS. Anal. Bioanal. Chem. 384: 438–447. Lee, W., S. K. Ku, J. E. Kim, G. E. Cho, G. Y. Song, and J. S. Bae (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol. Bioprocess Eng. 24: 445–453. Mikolka, P., P. Kosutova, M. Kolomaznik, J. Topercerova, J. Kopincova, A. Calkovska, and D. Mokra (2019) Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol. Res. 68: S253–S263. Lee, W., H. Lee, T. Lee, E. K. Park, and J. S. Bae (2020) Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. Phytomedicine. 69: 153200. Jeong, S. Y., M. Kim, E. K. Park, J. S. Kim, D. Hahn, and J. S. Bae (2020) Inhibitory functions of novel compounds from dioscorea batatas decne peel on HMGB1-mediated septic responses. Biotechnol. Bioprocess Eng. 25: 1–8. Ma, Y., T. Karunakaran, V. P. Veeraraghavan, S. K. Mohan, and S. Li (2019) Sesame inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in thyroid cancer cell lines (FTC-133). Biotechnol. Bioprocess Eng. 24: 646–652. Zhang, Y., M. Liu, R. Fan, Q. Zhou, J. Yang, S. Yang, C. Wang, and J. Kou (2019) Walnut protein isolates attenuate particulate matter-induced lung and cardiac injury in mice and zebra fish. RSC Adv. 9: 40736–40744. Jia, Y. Y., Q. Wang, and T. Liu (2017) Toxicity research of PM2.5 compositions in vitro. Int. J. Environ. Res. Public Health. 14: 232. Zwolak, I. (2016) Comparison of three different cell viability assays for evaluation of vanadyl sulphate cytotoxicity in a Chinese hamster ovary K1 cell line. Toxicol. Ind. Health. 32: 1013–1025. Dumax-Vorzet, A. F., M. Tate, R. Walmsley, R. H. Elder, and A. C. Povey (2015) Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis. 30: 621–633. Bisig, C., S. Steiner, P. Comte, J. Czerwinski, A. Mayer, A. Petri-Fink, and B. Rothen-Rutishauser (2015) Biological effects in lung cells in vitro of exhaust aerosols from a gasoline passenger car with and without particle filter. Emiss. Control Sci. Technol. 1: 237–246. Geng, H., Z. Meng, and Q. Zhang (2006) In vitro responses of rat alveolar macrophages to particle suspensions and water-soluble components of dust storm PM2.5. Toxicol. In Vitro. 20: 575–584. Redza-Dutordoir, M. and D. A. Averill-Bates (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 1863: 2977–2992. Jurgensmeier, J. M., Z. Xie, Q. Deveraux, L. Ellerby, D. Bredesen, and J. C. Reed (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA. 95: 4997–5002. Lin, L., K. Cheng, Z. Xie, C. Chen, L. Chen, Y. Huang, and Z. Liang (2019) Purification and characterization a polysaccharide from Hedyotis diffusa and its apoptosis inducing activity toward human lung cancer cell line A549. Int. J. Biol. Macromol. 122: 64–71. Brentnall, M., L. Rodriguez-Menocal, R. L. De Guevara, E. Cepero, and L. H. Boise (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14: 32. Yang, B., D. Ye, and Y. Wang (2013) Caspase-3 as a therapeutic target for heart failure. Expert Opin. Ther. Targets. 17: 255–263. Lodovici, M. and E. Bigagli (2011) Oxidative stress and air pollution exposure. J. Toxicol. 2011: 487074. Valavanidis, A., T. Vlachogianni, K. Fiotakis, and S. Loridas (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health. 10: 3886–3907. Valavanidis, A., K. Fiotakis, and T. Vlachogianni (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol Rev. 26: 339–362. Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci (2012) Oxidative stress and antioxidant defense. World Allergy Organ J. 5: 9–19. Ighodaro, O. M. and O. A. Akinloye (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54: 287–293. Chirino, Y. I., Y. Sanchez-Perez, A. R. Osornio-Vargas, R. Morales-Barcenas, M. C. Gutierrez-Ruiz, Y. Segura-Garcia, I. Rosas, J. Pedraza-Chaverri, and C. M. Garcia-Cuellar (2010) PM10 impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol. Lett. 193: 209–216.