Supporting integrated STEM in the elementary classroom: a professional development approach centered on an engineering design challenge
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R., Evangelou, D., English, L., Figueiredo, A. D., Mousoulides, N., Pawley, A. L., & Wilson, D. M. (2011). Multiple perspectives on engaging future engineers. Journal of Engineering Education, 100(1), 48–88.
Ball, D. L., & Forzani, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of Teacher Education, 60(5), 497–511.
Berland, L. K. (2014). Designing for STEM integration. Journal of Pre-College Engineering Education Research, 3(1), Article 3. http://dx.doi.org/10.7771/2157–9288.1078 .
Bers, M. U., Ponte, I., Juelich, K., & Schenker, J. (2002). Teachers as Designers : Integrating Robotics in Early Childhood Education. Information Technology in Childhood Education Annual, 2002, 123–145. Retrieved from http://www.editlib.org/p/8850/ .
Bethke Wendell, K., & Rogers, C. (2013). Engineering Design‐Based Science, Science Content Performance, and Science Attitudes in Elementary School. Journal of Engineering Education, 102(4), 513–540.
Borko, H., Jacobs, J., Eiteljorg, E., & Pittman, M. E. (2008). Video as a tool for fostering productive discussions in mathematics professional development. Teaching and Teacher Education, 24, 417–436.
Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. doi: 10.1111/j.1949-8594.2011.00109.x .
Brophy, S., Klein, S., Portsmore, M., & Rodgers, C. (2008). Advancing Engineering Education in P-12 Classrooms. Journal of Engineering Education, 97(3), 369–387. doi: 10.1002/j.2168-9830.2008.tb00985.x .
Bybee, R. W. (2010). K-12 engineering education standards: Opportunities and barriers. In National Research Council (Ed.), Standards for K-12 engineering education? (pp. 55–66). Washington: The National Academies Press.
Bybee, R. (2013). The case of STEM education: Challenges and opportunities. Arlington: NSTA Press.
Capobianco, B. M., & Rupp, M. (2014). STEM Teachers' Planned and Enacted Attempts at Implementing Engineering Design‐Based Instruction. School Science and Mathematics, 114(6), 258–270.
Carlson, L., & Sullivan, J. (2004). Exploiting design to inspire interest in engineering across the K-16 engineering curriculum. International Journal of Engineering Education, 20(30), 372–380.
Carson, R., & Campbell, P. B. (2007). Museum of Science: Engineering is Elementary; Exploring the impact of EiE on participating teachers. Groton: Campbell-Kibler Associates, Inc.
Crismond, D. (2001). Learning and using science ideas when doing investigate and redesign tasks: A student of naive, novice and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38(7), 791–820.
Cunningham, C. (2008). Elementary Teacher Professional Development In Engineering: Lessons Learned From Engineering Is Elementary. (Paper presented at 2008 Annual Conference & Exposition, Pittsburgh, Pennsylvania). Retrieved from https://peer.asee.org/4414 .
Cunningham, C. M., & Hester, K. (2007). Engineering is elementary: an engineering and technology curriculum for children. Honolulu: Proceedings of the American Society for Engineering Education Annual Conference and Exposition.
Cunningham, C. M., & Lachapelle, C. P. (2014). Designing engineering experiences to engage all students. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in pre-college settings: synthesizing research, policy, and practices (pp. 117–142). Lafayette: Purdue University Press.
Diefes-Dux, H. A. (2014). In-service teacher professional development in engineering education: early years. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Synthesizing Research, Policy, and Practices. Lafayette: Purdue University Press.
Dym, C. L., Agogine, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering Design Thinking, Teaching, and Learning. Journal of Engineering Education, 94(1), 103–120.
Ejiwale, J. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63–74.
English, L. D. (2015). STEM: Challenges and Opportunities for Mathematics Education. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 4–18). Hobart: PME.
English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(14), 1–18. doi: 10.1186/s40594-015-0027-7 .
Estapa, A., Pinnow, R. J., & Chval, K. B. (2016). Video as a professional development tool to support novice teachers as they learn to teach English language learners. The New Educator, 12(1), 85–104.
Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., & Mamlok‐Naaman, R. (2004). Design‐based science and student learning. Journal of Research in Science Teaching, 41(10), 1081–1110.
Gamoran, A., Secada, W., & Marrett, C. (2006). The organizational context of teaching and learning (Handbook of the sociology of education, pp. 37–63).
Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research Journal, 38, 915.
Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. (2009). Teaching practice: A cross-professional perspective. Teachers College Record, 111(9), 2055–2100.
Guskey, T. R. (1986). Staff development and the process of teacher change. Educational Researcher, 15(5), 5.
Guskey, T. R. (2002). Does It Make a Difference? Evaluating Professional Development. Educational Leadership, 59, 45–51.
Guzey, S. S., Tank, K. M., Wang, H.-H., Roehrig, G., & Moore, T. J. (2014). A high-quality professional development for teachers of grades 3–6 for implementing engineering into classrooms. School Science and Mathematics, 114(3), 139–149. doi: 10.1111/ssm.12061 .
Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building Up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials. Journal of Pre-College Engineering Education Research, 6(1), 2.
Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288.
Johnson, C. C. (2013). Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367–368. doi: 10.1111/ssm.12043 .
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1–11.
Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B. B., Gray, J. T., Holbrook, J., Ryan, M., & Puntambekar, S. (2003). Problem-based learning meets case- based reasoning in the middle-school science classroom: Putting a learning-by-design curriculum into practice. Journal of the Learning Sciences, 12(4), 495–548. doi: 10.1207/S15327809JLS1204_2 .
Krippendorff, K. (2013). Content analysis: An introduction to its methodology. Los Angeles: SAGE. Moore et. al., 2014.
Lachapelle, C. P., & Cunningham, C. M. (2014). Engineering in elementary schools (Engineering in pre-college settings: Synthesizing research, policy, and practices). Lafayette: Purdue Univ.
Mehalik, M. M., Doppelt, Y., & Schunn, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71–85. doi: 10.1002/j.2168-9830.2008.tb00955.x .
Moore, T. J., Guzey, S. S., & Brown, A. (2014). Greenhouse design to increase habitable land: An engineering unit. Science Scope, 37(7), 51–57.
Moore, T. J., Stohlmann, M. S., Wang, H.-H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Synthesizing Research, Policy, and Practices. Lafayette: Purdue University Press.
Moore, T. J., Johnson, C. C., Peters-Burton, E. E., & Guzey, S. S. (2015). The need for a STEM road map. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM Road Map: A Framework for Integrated STEM Education. New York: Routledge.
Morgan, D. L. (1993). Qualitative content analysis: A guide to paths not taken. Qualitative Health Research, 3, 112–121.
National Academy of Engineering & National Research Council. (2009). Engineering in K-12 Education: Understanding the status and improving the prospects. Washington: The National Academies Press.
National Research Council. (2011). Successful K-12 STEM Education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington: The National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington: The National Academies Press.
National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: National Academies Press.
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington: The National Academies Press.
O’Brien, S., Karsnitz, J., Sandt, S., Bottomley, L., & Parry, E. (2014). Engineering in preservice teacher education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in Pre-college Settings: Synthesizing Research, Policy, and Practices (pp. 277–300).
Prevost, A., Nathan, M., & Phelps, L. A. (2014). High School Pre-Engineering Curricula: Assessing Teacher Beliefs, Intended Curriculum, and Enacted Curriculum. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Synthesizing Research, Policy, and Practices. Lafayette: Purdue University Press.
Purzer, S., Hathaway Goldstein, M., Adams, R., Xie, C., & Nourian, S. (2015). An exploratory study of informed engineering design behaviors associated with scientific explanations. International Journal of STEM Education, 2, 9. doi: 10.1186/s40594-015-0019-7 .
Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is Adding the E Enough? Investigating the Impact of K-12 Engineering Standards on the Implementation of STEM Integration. School Science and Mathematics, 112(1), 31–44. doi: 10.1111/j.1949-8594.2011.00112.x .
Sanders, M. E. (2008). STEM, STEMeducation, STEMmania. The Technology Teacher, 1, 20–26.
Schreier, M. (2012). Qualitative content analysis in practice. Thousand Oaks: Sage.
Sheppard, S. D., Macatangay, K., Colby, A., & Sullivan, W. M. (2009). Educating Engineers: Designing for the Future Field Book Highlights and Summary.
Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, 2(1), 28–34. doi: 10.5703/1288284314653 .