Support-vector networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations of the potential function method in pattern recognition learning.Automation and Remote Control, 25:821?837.
Anderson, T.W., & Bahadur, R.R. (1966). Classification into two multivariate normal distributions with different covariance matrices.Ann. Math. Stat., 33:420?431.
Boser, B.E., Guyon, I., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. InProceedings of the Fifth Annual Workshop of Computational Learning Theory, 5, 144?152. Pittsburgh, ACM.
Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun, Y., Sackinger, E., Simard, P., Vapnik, V., & Miller, U.A. (1994). Comparison of classifier methods: A case study in handwritten digit recognition.Proceedings of 12th International Conference on Pattern Recognition and Neural Network.
Bromley, J., & Sackinger, E. (1991). Neural-network andk-nearest-neighbor classifiers. Technical Report 11359-910819-16TM, AT&T.
Cournant, R., & Hilbert, D. (1953).Methods of Mathematical Physics, Interscience, New York.
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems.Ann. Eugenics, 7:111?132.
LeCun, Y. (1985). Une procedure d'apprentissage pour reseau a seuil assymetrique.Cognitiva 85: A la Frontiere de l'Intelligence Artificielle des Sciences de la Connaissance des Neurosciences, 599?604, Paris.
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., & Jackel, L.D. (1990). Handwritten digit recognition with a back-propagation network.Advances in Neural Information Processing Systems, 2, 396?404, Morgan Kaufman.
Parker, D.B. (1985). Learning logic. Technical Report TR-47, Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA.
Rosenblatt, F. (1962).Principles of Neurodynamics, Spartan Books, New York.
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by backpropagating errors.Nature, 323:533?536.
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1987). Learning internal representations by error propagation. In James L. McClelland & David E. Rumelhart (Eds.),Parallel Distributed Processing, 1, 318?362, MIT Press.
Vapnik, V.N. (1982).Estimation of Dependences Based on Empirical Data, Addendum 1, New York: Springer-Verlag.