Superhydrophobic micro-nanofibers from PHBV-SiO2 biopolymer composites produced by electrospinning

Saad Rabbani1, Reza Jafari1, Gelareh Momen1
1Department of Applied Sciences, University of Quebec in Chicoutimi (UQAC), 555, boul. de l'Université, Chicoutimi, Quebec G7H 2B1, Canada

Tóm tắt

AbstractElectrospinning is a relatively simple technique for producing continuous fibers of various sizes and morphologies. In this study, an intrinsically hydrophilic poly(3-hydroxybutarate-co-3-hydroxyvalerate) (PHBV) biopolymer strain was electrospun from a solution under optimal processing conditions to produce bilayers of beadless micro-fibers and beaded nano-fibers. The fibrous mats produced from the pure PHBV solution exhibited hydrophilicity with complete wetting. Incorporation of polydimethylsiloxane (PDMS) treated silica into the electrospinning solutions resulted in a non-wetting state with increased fiber roughness and enhanced porosity; however, the fiber mats displayed high water droplet-adhesion. The SiO2–incorporated fibrous mats were then treated with stearic acid at an activation temperature of 80 °C. This treatment caused fiber surface plasticization, creating a tertiary hierarchical roughness owing to the interaction of PHBV chains with the polar carboxyl groups of the stearic acid. Scanning electron microscopy was used to assess the influence of the electrospinning process parameters and the incorporation of nanoparticles on surface morphology of the fibers; energy dispersive X-ray spectroscopy confirmed the presence of SiO2 nanoparticles. Fourier transform infrared spectroscopy was performed to study the incorporation of SiO2 and the interaction of stearic acid with PHBV at various concentrations. The chemical interaction between stearic acid and PHBV was confirmed, while SiO2 nanoparticles were successfully incorporated into the PHBV fibers at concentrations up to 4.5% by weight. The incorporation of nanoparticles and plasticization altered the thermal properties of PHBV and a decrease in crystalline fraction was observed. The stearic acid modified bilayers produced from the micro-nano-fibrous composites showed very low water droplet sticking, a roll off angle of approximately 4° and a high static contact angle of approximately 155° were achieved. Graphical Abstract

Từ khóa


Tài liệu tham khảo

S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chem. Rev. 115, 8230–8293 (2015). https://doi.org/10.1021/cr400083y

M.G. Arshad, M. Farzaneh, A. Nekahi, Properties and applications of superhydrophobic coatings in high voltage outdoor insulation: A review. IEEE Trans. Dielectr. Electr. Insul. 24, 3630–3646 (2017). https://doi.org/10.1109/TDEI.2017.006725

Z. Guo, F. Yang, Surfaces and interfaces of biomimetic superhydrophobic materials 1st. (Wiley-VCH, Weinheim, 2017)

R. Jafari, C. Cloutier, A. Allahdini, G. Momen, Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. The International Journal of Advanced Manufacturing Technology 103, 1225–1238 (2019). https://doi.org/10.1007/s00170-019-03630-4

K. Maghsoudi, E. Vazirinasab, G. Momen, R. Jafari, Advances in the Fabrication of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes. Ind. Eng. Chem. Res. 59, 9343–9363 (2020). https://doi.org/10.1021/acs.iecr.0c00508

G. Momen, M. Farzaneh, A ZnO-based nanocomposite coating with ultra water repellent properties. Appl. Surf. Sci. 258, 5723–5728 (2012). https://doi.org/10.1016/j.apsusc.2012.02.074

E. Vazirinasab, R. Jafari, G. Momen, Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 341, 40–56 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.053

E. Vazirinasab, G. Momen, R. Jafari, A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite. J. Mater. Sci. Technol. 66, 213–225 (2021). https://doi.org/10.1016/j.jmst.2020.06.029

A. Azimi Yancheshme, G. Momen, R. Jafari Aminabadi, Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Adv. Colloid Interface Sci. 279, 102155 (2020). https://doi.org/10.1016/j.cis.2020.102155

G. Rohman, Biodegradable Polymers: Recent Developments and New Perspectives (IAPC Publishing, Zagreb, Croatia, 2017)

Sindhu R, Binod P, Pandey A (2015) Microbial Poly-3-Hydroxybutyrate and Related Copolymers. In: Industrial Biorefineries & White Biotechnology. Elsevier, pp 575–605. https://doi.org/10.1016/B978-0-444-63453-5.00019-7

Rudnik E (2013) Biodegradability Testing of Compostable Polymer Materials. In: Handbook of Biopolymers and Biodegradable Plastics. Elsevier, pp 213–263. https://doi.org/10.1016/B978-1-4557-2834-3.00011-2

W. Yu, C.-H. Lan, S.-J. Wang, P.-F. Fang, Y.-M. Sun, Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers. Polymer. 51, 2403–2409 (2010). https://doi.org/10.1016/j.polymer.2010.03.024

C. Shuai, C. Wang, F. Qi, S. Peng, W. Yang et al., Enhanced Crystallinity and Antibacterial of PHBV Scaffolds Incorporated with Zinc Oxide. J. Nanomater. 2020, 1–12 (2020). https://doi.org/10.1155/2020/6014816

S. Vidhate, L. Innocentini-Mei, N.A. D’Souza, Mechanical and electrical multifunctional poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-multiwall carbon nanotube nanocomposites. Polym. Eng. Sci. 52, 1367–1374 (2012). https://doi.org/10.1002/pen.23084

A.P. Lemes, TLd.A. Montanheiro, A.P. Da Silva, N. Durán, PHBV/MWCNT Films: Hydrophobicity, Thermal and Mechanical Properties as a Function of MWCNT Concentration. Journal of Composites Science 3, 12 (2019). https://doi.org/10.3390/jcs3010012

H.-Y. Yu, J.-M. Yao, Z.-Y. Qin, L. Liu, X.-G. Yang, Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate). J. Appl. Polym. Sci. 130, 4299–4307 (2013). https://doi.org/10.1002/app.39529

L.S. Montagna, TLd.A. Montanheiro, M.R. Baldan, A.P.S. Oliveira, M.A. de Farias et al., Effect of graphite nanosheets on electrical, electromagnetic, mechanical and morphological characteristics of PHBV/GNS nanocomposites. Adv. Mater. Lett. 9, 499–504 (2018). https://doi.org/10.5185/amlett.2018.2044

V. Sridhar, I. Lee, H.H. Chun, H. Park, Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7, 320–328 (2013). https://doi.org/10.3144/expresspolymlett.2013.29

N.F. Braga, D.A. Vital, L.M. Guerrini, A.P. Lemes, D.M.D. Formaggio et al., PHBV-TiO2 mats prepared by electrospinning technique: Physico-chemical properties and cytocompatibility. Biopolymers 109, e23120 (2018). https://doi.org/10.1002/bip.23120

Y. Xu, L. Zou, H. Lu, Y. Wei, J. Hua et al., Preparation and characterization of electrospun PHBV/PEO mats: The role of solvent and PEO component. J. Mater. Sci. 51, 5695–5711 (2016). https://doi.org/10.1007/s10853-016-9872-0

M. Jafarpour, A.S. Aghdam, A. Koşar, F.Ç. Cebeci, M. Ghorbani, Electrospinning of ternary composite of PMMA-PEG-SiO2 nanoparticles: Comprehensive process optimization and electrospun properties. Materials Today Communications 29, 102865 (2021). https://doi.org/10.1016/j.mtcomm.2021.102865

S. Sriram, A. Kumar, Separation of oil-water via porous PMMA/SiO2 nanoparticles superhydrophobic surface. Colloids Surf., A 563, 271–279 (2019). https://doi.org/10.1016/j.colsurfa.2018.12.017

W. Qing, X. Li, Y. Wu, S. Shao, H. Guo et al., In situ silica growth for superhydrophilic-underwater superoleophobic Silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. J. Membr. Sci. 612, 118476 (2020). https://doi.org/10.1016/j.memsci.2020.118476

L. Ji, X. Zhang, Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater. Lett. 62, 2161–2164 (2008). https://doi.org/10.1016/j.matlet.2007.11.051

T.E. Newsome, S.V. Olesi. Electrospinning silica/polyvinylpyrrolidone composite nanofibers. J Appl Polym Sci 131, (2014). https://doi.org/10.1002/app.40966

J. Seyfi, I. Hejazi, S.H. Jafari, H.A. Khonakdar, F. Simon, Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles. J Colloid Interface Sci 478, 117–126 (2016). https://doi.org/10.1016/j.jcis.2016.06.005

P.M. Ma, R.Y. Wang, S.F. Wang, Y. Zhang, Y.X. Zhang et al., Effects of fumed silica on the crystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate). J. Appl. Polym. Sci. 108, 1770–1777 (2008). https://doi.org/10.1002/app.27577

N. Ojha, N. Das, Fabrication and characterization of biodegradable PHBV/SiO2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol. 9, 785–795 (2020). https://doi.org/10.1049/iet-nbt.2020.0066

L. Wang, Y. Guo, Y. Chen, T. Chen, S. Zhu et al., Enhanced Mechanical and Water Absorption Properties of Rice Husk-Derived Nano-SiO2 Reinforced PHBV Composites. Polymers (Basel) 10, 1022 (2018). https://doi.org/10.3390/polym10091022

R. Khankrua, S. Pivsa-Art, H. Hiroyuki, S. Suttiruengwong, Thermal and Mechanical Properties of Biodegradable Polyester/Silica Nanocomposites. Energy Procedia 34, 705–713 (2013). https://doi.org/10.1016/j.egypro.2013.06.803

B. Melendez-Rodriguez, K.J. Figueroa-Lopez, A. Bernardos, R. Martínez-Máñez, L. Cabedo et al., Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials (Basel) 9, 227 (2019). https://doi.org/10.3390/nano9020227

H. Nosal, K. Moser, M. Warzała, A. Holzer, D. Stańczyk et al., Selected Fatty Acids Esters as Potential PHB-V Bioplasticizers: Effect on Mechanical Properties of the Polymer. J. Polym. Environ. 29, 38–53 (2020). https://doi.org/10.1007/s10924-020-01841-5

R. Requena, A. Jiménez, M. Vargas, A. Chiralt, Effect of plasticizers on thermal and physical properties of compression-moulded poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] films. Polym. Testing 56, 45–53 (2016). https://doi.org/10.1016/j.polymertesting.2016.09.022

Wadey BL (2003) Plasticizers. In: Encyclopedia of Physical Science and Technology. Elsevier, pp 441–456. https://doi.org/10.1016/B0-12-227410-5/00586-X

V. Jost, H.-C. Langowski, Effect of different plasticisers on the mechanical and barrier properties of extruded cast PHBV films. Eur. Polymer J. 68, 302–312 (2015). https://doi.org/10.1016/j.eurpolymj.2015.04.012

D. Lukáš, A. Sarkar, L. Martinová, K. Vodsed’álková, D. Lubasová et al., Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). Text. Prog. 41, 59–140 (2009). https://doi.org/10.1080/00405160902904641

I. Sas, R.E. Gorga, J.A. Joines, K.A. Thoney, Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J. Polym. Sci., Part B: Polym. Phys. 50, 824–845 (2012). https://doi.org/10.1002/polb.23070

H. Rodríguez-Tobías, G. Morales, D. Grande, Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater Sci Eng C Mater Biol Appl 101, 306–322 (2019). https://doi.org/10.1016/j.msec.2019.03.099

S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma et al., Electrospun nanofibers: solving global issues. Mater. Today 9, 40–50 (2006). https://doi.org/10.1016/S1369-7021(06)71389-X

N. Nuraje, W.S. Khan, Y. Lei, M. Ceylan, R. Asmatulu, Superhydrophobic electrospun nanofibers. Journal of Materials Chemistry A 1, 1929–1946 (2013). https://doi.org/10.1039/c2ta00189f

A. Pich, N. Schiemenz, C. Corten, H.-J.P. Adler, Preparation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles in O/W emulsion. Polymer 47, 1912–1920 (2006). https://doi.org/10.1016/j.polymer.2006.01.038

M. Zhu, W. Zuo, H. Yu, W. Yang, Y. Chen, Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J. Mater. Sci. 41, 3793–3797 (2006). https://doi.org/10.1007/s10853-005-5910-z

B. Melendez-Rodriguez, J.L. Castro-Mayorga, M.A.M. Reis, C. Sammon, L. Cabedo et al., Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems 2, 38 (2018). https://doi.org/10.3389/fsufs.2018.00038

D.-G. Yu, W.-C. Lin, C.-H. Lin, M.-C. Yang, Cytocompatibility and antibacterial activity of a PHBV membrane with surface-immobilized water-soluble chitosan and chondroitin-6-sulfate. Macromol Biosci 6, 348–357 (2006). https://doi.org/10.1002/mabi.200600026

A. Wang, Y. Gan, H. Yu, Y. Liu, M. Zhang et al., Improvement of the cytocompatibility of electrospun poly(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate mats by Ecoflex. J Biomed Mater Res A 100, 1505–1511 (2012). https://doi.org/10.1002/jbm.a.34034

C.N. Degeratu, G. Mabilleau, E. Aguado, R. Mallet, D. Chappard et al., Polyhydroxyalkanoate (PHBV) fibers obtained by a wet spinning method: Good in vitro cytocompatibility but absence of in vivo biocompatibility when used as a bone graft. Morphologie 103, 94–102 (2019). https://doi.org/10.1016/j.morpho.2019.02.003

A. BalakrishnaPillai, A. Jaya Kumar, H. Kumarapillai, Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly(ethylene glycol) blends. 3 Biotech 10, 32 (2020). https://doi.org/10.1007/s13205-019-2017-9

X. Zhao, Y. Liu, C. Wang, Q. Liu, Structure and filtration performance of fibrous composite membranes containing environmentally friendly materials for water purification. Fibers and Polymers 16, 2586–2592 (2015). https://doi.org/10.1007/s12221-015-5562-9

D. Grande, J. Ramier, D.L. Versace, E. Renard, V. Langlois, Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. N Biotechnol 37, 129–137 (2017). https://doi.org/10.1016/j.nbt.2016.05.006

Y. Xu, L. Zou, H. Lu, T. Kang, Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Adv. 7, 4000–4010 (2017). https://doi.org/10.1039/c6ra26783a

Y. Li, W. Weng, Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. J Mater Sci Mater Med 19, 19–25 (2008). https://doi.org/10.1007/s10856-007-3123-5

L. Feng, H. Zhang, P. Mao, Y. Wang, Y. Ge, Superhydrophobic alumina surface based on stearic acid modification. Appl. Surf. Sci. 257, 3959–3963 (2011). https://doi.org/10.1016/j.apsusc.2010.11.143

Mojiri H, Aliofkhazraei M (2017) 3.19 Effect of Surface Roughness on Wetting Properties. In: Comprehensive Materials Finishing. Elsevier, pp 276–305. https://doi.org/10.1016/B978-0-12-803581-8.09181-5

C.H. Chan, C. Kummerlöwe, H.-W. Kammer, Crystallization and Melting Behavior of Poly(3-hydroxybutyrate)-Based Blends. Macromol. Chem. Phys. 205, 664–675 (2004). https://doi.org/10.1002/macp.200300062

Y.I. Yoon, H.S. Moon, W.S. Lyoo, T.S. Lee, W.H. Park, Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. J Colloid Interface Sci 320, 91–95 (2008). https://doi.org/10.1016/j.jcis.2008.01.029

H.W. Tong, M. Wang, Effects of Processing Parameters on the Morphology and Size of Electrospun PHBV Micro- and Nano-Fibers. Key Eng. Mater. 334–335, 1233–1236 (2007). https://doi.org/10.4028/www.scientific.net/KEM.334-335.1233

S. Liu, D. Li, Y. Yang, L. Jiang, Fabrication, mechanical properties and failure mechanism of random and aligned nanofiber membrane with different parameters. Nanotechnol. Rev. 8, 218–226 (2019). https://doi.org/10.1515/ntrev-2019-0020

S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu et al., Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 8, 2718–2734 (2015). https://doi.org/10.3390/ma8052718

S.J. Upson, T. O’Haire, S.J. Russell, K. Dalgarno, A.M. Ferreira, Centrifugally spun PHBV micro and nanofibres. Mater Sci Eng C Mater Biol Appl 76, 190–195 (2017). https://doi.org/10.1016/j.msec.2017.03.101

A. Haider, S. Haider, I.-K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2018). https://doi.org/10.1016/j.arabjc.2015.11.015

I.T. Seoane, L.B. Manfredi, V.P. Cyras, Effect of two different plasticizers on the properties of poly(3-hydroxybutyrate) binary and ternary blends. J. Appl. Polym. Sci. 135, 46016 (2018). https://doi.org/10.1002/app.46016

C. Wang, C. Piao, From hydrophilicity to hydrophobicity: A critical review-part II: Hydrophobic conversion. Wood Fiber Sci. 43, 41–56 (2011)