Vật liệu siêu mạnh cho nhiệt độ vượt quá 2000 °C
Tóm tắt
Từ khóa
#gốm siêu mạnh #zirconium diboride #nhiệt độ cao #cấu trúc lõi-vỏ #tăng cường độ bền in-situTài liệu tham khảo
Van Wie, D. M., Drewry, D. G. Jr., King, D. E. & Hudson, C. M. The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915–24 (2004).
Simonenko, E. P., Sevast’yanov, D. V., Simonenko, N. P., Sevast’yanov, V. G. & Kuznetsov, N. T. Promising ultra-high-temperature ceramic materials for aerospace applications. Russ. J. of Inorg. Chem. 58, 1669–1693 (2013).
Wuchina, E. J., Opila, E., Opeka, M., Fahrenholtz, W. G. & Talmy, I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. The Electrochem. Soc. Interf. 16, 30–36 (2007).
Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y. (Eds.). Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications. John Wiley & Sons, Inc., Hoboken, NJ, 112–143 (2014).
Guo, S. Q. Densification of ZrB2-Based composites and their mechanical and physical properties: a review. J. Europ. Ceram. Soc. 29, 995–1011 (2009).
Guoa, S. Q., Nishimura, T., Mizuguchi, T. & Kagawa, Y. Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites. J. Europ. Ceram. Soc. 28, 1891–1898 (2008).
Hu, P. & Wang, Z. Flexure strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800 °C. J. Europ. Ceram. Soc. 30, 1021–1026 (2010).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Strength of Zirconium Diboride to 2300 °C. J. Am. Ceram. Soc. 96 47–50 (2013).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Elevated temperature strength enhancement of ZrB2–30 vol% SiC ceramics by postsintering thermal annealing, J. Am. Ceram. Soc. 99, 962–970 (2016).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J. Europ. Ceram. Soc. 33, (2013) 2889–2899.
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Ultra-high temperature mechanical properties of a zirconium diboride–zirconium carbide ceramic, J. Am. Ceram. Soc. 99, 597–603 (2016).
Zou, J., Zhang, G. J., Hu, C.-F., Nishimura, T., Sakka, Y., Vleugels, J. & Van der Biest O. Strong ZrB2-SiC ceramics at 1600 °C. J. Am. Ceram. Soc. 95, 874–878 (2010).
Carney, C. M., Parthasarathy, T. A. & Cinibulk, M. K. Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J. Amer. Ceram. Soc. 94, 2600–2607 (2011).
Zhang, S. C., Hilmas, G. E. & Fahrenholtz, W. G. Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc. 91, 3530–3535 (2008).
Ma, H. B., Man, Z. Y., Liu, J. X., Xu, F. F. & Zhang G.J. Microstructure, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5 vol% WC. Mater. & Design 81, 133–140 (2015).
Sha, J. J., Wei, Z. Q., Li, J., Zhang, Z. F., Yang, X. L., Zhang Y. C. & Dai J. X. Mechanical properties and toughening mechanism of WC-doped ZrB2-ZrSi2 ceramic composites by hot pressing. Mater. & Design 62, 199–204 (2014).
Monteverde F. & Silvestroni L. Combined effects of WC and SiC on densification and thermo-mechanical stability of ZrB2 ceramics. Mater. and Design 109, 396–407 (2016).
Silvestroni, L., Sciti, D., Monteverde, F., Stricker, K. & Kleebe, H.-J. Microstructure evolution of a W-doped ZrB2 ceramic upon high-temperature oxidation. In press at J. Am. Ceram. Soc. (2017).
Chan, L. L. Y., Scroger, M. G. & Phillips, B. Condensed Phase Relations in the Systems ZrO2-WO2-WO3 and HfO2-WO2-WO3 . J. Amer. Ceram. Soc. 50, 211–215 (1967).
Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J. Europ. Ceram. Soc. 35, 463–376 (2015).
Cutler, R. A. Engineering Properties of Borides. In: Schneider, S. J. Jr. (ed.), Engineered Materials Handbook. ASM International, Materials Park, OH, pp. 787–803 (1991).
Stevens, R. Engineering Properties of Zirconia. In: Schneider, S. J. Jr. (ed.), Engineered Materials Handbook. ASM International, Materials Park, OH, pp. 775–786 (1991).
Evans, A. G. High Temperature failure mechanisms in Ceramic Polycrystals. In: Tressler, R. E. & Bradt, R. C. (eds.), Deformation of ceramic materials II. Plenum Press, New York, pp. 487–506 (1984).
Ddalgleish, B. J., Johnson, S. M. & Evans, A. G. High-temperature failure of polycrystalline alumina: I, crack nucleation. J. Amer. Ceram. Soc. 67, 741–750 (1984).
Lange, F. F. Compressive surface stresses developed in ceramics by an oxidation-induced phase-change. J. Am. Ceram. Soc. 63, 38–40 (1980).
Evans, A. G. & Rana, A. High temperature failure mechanisms in ceramics. Acta Metall. 28, 128–141 (1979).
Watts, J., Hilmas, G. E., Fahrenholtz, W. G., Brown, D. & Clausen, B. Measurement of thermal residual stresses in ZrB2 –SiC composites. J. Europ. Ceram. Soc. 31, 1811–1820 (2011).
Tiez, T. E. & Wilson, J. W. Behavior and Properties of Refractory Metals. Univ. of Tokyo Press, Tokyo, Japan (1965).
Gludovatz, B., Faleschini, M., Wurster, S., Hofmann, A. & Pippan R. Influence of Microstructure on the Fracture Toughness of Tungsten Alloys. In: Hsia, K. J., Gökken, M., Pollock, T., Portella, P. D. & Moody, N. R. (eds.) Proceedings of Refractory Metals 2008: Properties of Refractory Metals. TMS, The Minerals, Metals and Materials Society (2008).
Ashby, M. F., Blunt, F. J. & Bannister, M. Flow characteristics of highly constrained metal wires. Acta Metallurgica, 37, 1847–1857 (1989).
Nawa, M., Yamazaki, K., Sekino, T. & Niihara K. Microstructure and mechanical behaviour of 3Y-TZP/Mo nanocomposites possessing a novel interpenetrated intragranular microstructure. J. Mater. Sci. 31, 2849–2858 (1996).
Sekino, T., Yu, J. H., Choa, Y. H., Lee, J. S. & Niihara, K. Reduction and sintering of alumina/tungsten nanocomposites. J. Ceram. Soc. of Jap. 108, 541–547 (2000).
Kleebe, H.-J., Lauterbach, S., Shabalala, T. C., Herrmann, M. & Sigalas, I. B6O: A correlation between mechanical properties and microstructure evolution upon Al2O3 addition during hot pressing. J. Am. Ceram. Soc. 91, 569–575 (2008).
Song, S. G., Vaidya, R. U., Zurek, A. K. & Gray G. T. Stacking faults in SiC particles and their effect on the fracture behavior of a 15 Vol Pct SiC/6061-AI matrix composite. Metall. and Mater. Trans. 27A, 459–465 (1996).
Gifkins, R. C. Grain-boundary sliding and its accommodation during creep and superplasticity. Met. Transact. A, 7A, 1225–1232 (1976).
Hirth, J. P. & Lothe, J. Theory of Dislocations, Wiley, New York, USA (1982).
Cutard, T., VIatte, T., Feusier, G. & Benoit, W. Microstructure and high temperature mechanical properties of TiC0.7N0.3-Mo2C-Ni cermets. Mater. Sci. Eng. A, 209, 218–227 (1996).
Abriata, J. P., Garcés, J. & Versaci R. The O−Zr (Oxygen-Zirconium) system. Bull. of Alloy Phase Diagr. 7, 116–124 (1986).
Kosolapova, T. Y. (ed.), Handbook Of High Temperature Compounds: Properties, Production, Applications. Hemisphere Publishing Corporation, New York, p. 776 (1990).
Mitchell, D. R. G. DiffTools: software tools for electron diffraction in digital micrograph. Microscopy Res. and Technique, 71, 588–593 (2008).