Sulfidation of NiMn‐Layered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance

Advanced Energy Materials - Tập 6 Số 5 - 2016
Jingwei Chen1, Xu Wang1, Jiangxin Wang1, Pooi See Lee1
1School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Tóm tắt

Supercapacitors can deliver high‐power density and long cycle stability, but the limited energy density due to poor electronic and ionic conductivity of the supercapacitor electrode has been a bottleneck in many applications. A strategy to prepare microflower‐like NiMn‐layered double hydroxides (LDH) with sulfidation is delineated to reduce the charge transfer resistance of supercapacitor electrode and realize faster reversible redox reactions with notably enhanced specific capacitance. The incorporation of graphite oxide (GO) in NiMn LDH during sulfidation leads to simultaneous reduction of GO with enhanced conductivity, lessened defects, and doping of S into the graphitic structure. Cycling stability of the sulfidized composite electrode is enhanced due to the alleviation of phase transformation during electrochemical cycling test. As a result, this sulfidation product of LDH/GO (or LDHGOS) can reach a high‐specific capacitance of 2246.63 F g−1 at a current density of 1 A g−1, and a capacitance of 1670.83 F g−1 is retained at a high‐current density of 10 A g−1, exhibiting an outstanding capacitance and rate performance. The cycling retention of the LDHGOS electrode is also extended to ≈ 67% after 1500 cycles compared to only ≈44% of the pristine NiMn LDH.

Từ khóa


Tài liệu tham khảo

10.1002/aenm.201301240

10.1021/nn901311t

10.1002/aenm.201400236

10.1002/aenm.201100221

10.1039/c2nr30252g

10.1021/nn100592d

10.1016/j.jpowsour.2012.11.118

10.1039/C3TA13932H

10.1039/b605422f

10.1021/cr200434v

Gu F., 2014, Small

10.1016/j.jpowsour.2011.10.056

10.1021/cm203831p

10.1039/c3ta11452j

10.1002/adfm.201303638

10.1002/chem.201403991

10.1021/nl2026635

10.1021/am401680m

10.1021/jp3028353

10.1039/c2jm35307e

10.1002/adma.201205064

10.1021/cm203697w

10.1021/nl302761z

10.1016/j.nanoen.2014.12.030

10.1021/nl404199v

10.1016/j.jpowsour.2013.12.092

10.1039/c3nr02958a

10.1016/j.nanoen.2014.02.006

10.1016/j.matchemphys.2012.01.039

10.1039/c1cp21917k

10.1016/j.electacta.2014.01.009

10.1149/1.2806844

10.1016/j.electacta.2011.07.003

10.1002/aenm.201300431

10.1021/nn203393d

10.1016/j.carbon.2012.07.035

10.1021/cm703245k

10.1002/jrs.2014

b) RRUFF Chemical analysis of Millerite http://rruff.info/millerite/R070323(accessed: October2015).

10.1016/j.electacta.2014.12.090

10.1039/B917103G

10.1021/ja206955k

10.1039/c0ee00261e

10.1021/nn202020w

10.1016/j.cej.2015.01.072

10.1016/j.electacta.2015.06.031

10.1039/c3ta11167a

10.1039/c1ra00240f

10.1021/nn1000035