Cảm ứng đặc hiệu anthocyanin bởi sucrose trong Arabidopsis yêu cầu gen MYB75/PAP1

Oxford University Press (OUP) - Tập 139 Số 4 - Trang 1840-1852 - 2005
Sheng Teng1,2, Joost J. B. Keurentjes1,2, Leónie Bentsink1,2, Maarten Koornneef1,2, Sjef Smeekens1,2
1Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (S.T., S.S.)
2Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (S.T., S.S.); and Laboratory of Genetics, Wageningen University, 6703 BD Wageningen, The Netherlands (J.K., L.B., M.K.)

Tóm tắt

Tóm tắt

Sự tích lũy anthocyanin do đường gây ra đã được quan sát ở nhiều loài thực vật. Chúng tôi nhận thấy rằng sucrose (Suc) là chất thúc đẩy mạnh nhất cho quá trình sinh tổng hợp anthocyanin trong cây giống Arabidopsis (Arabidopsis thaliana). Các loại đường khác và kiểm soát áp suất thẩm thấu ít hiệu quả hoặc không hiệu quả. Phân tích sự tích lũy anthocyanin do Suc trong 43 quần thể Arabidopsis cho thấy biến đổi tự nhiên đáng kể đối với đặc điểm này. Quần thể Cape Verde Islands (Cvi) thực chất không phản ứng với Suc, trong khi Landsberg erecta là trung gian. Quần thể dòng giao thoa tái tổ hợp Landsberg erecta/Cvi được sử dụng trong phân tích chỉ số tính trạng định lượng cho sự tích lũy anthocyanin do Suc (SIAA). Tổng cộng bốn chỉ số tính trạng định lượng cho SIAA được xác định theo cách này. Vị trí có đóng góp lớn nhất cho đặc điểm, SIAA1, được định vị chi tiết và thông qua phương pháp gen ứng cử viên, việc chỉ ra rằng gen MYB75/PAP1 mã hóa SIAA1. Nghiên cứu bổ sung gen di truyền và phân tích đột biến knockout tạo ra trong phòng thí nghiệm trên gen này đã xác nhận kết luận này. Nồng độ Suc phụ thuộc cách thức kích thích sự tích lũy mRNA MYB75/PAP1. Hơn nữa, MYB75/PAP1 là cần thiết cho biểu hiện trung gian Suc của gen dihydroflavonol reductase. Vị trí SIAA1 trong Cvi có thể là một alen MYB75/PAP1 yếu hoặc bị mất chức năng. Quần thể C24 tương tự cho thấy phản hồi rất yếu đối với sự tích lũy anthocyanin do Suc mã hóa bởi cùng vị trí này. Phân tích trình tự cho thấy rằng quần thể Cvi và C24 chứa các đột biến bên trong và phía hạ lưu của miền liên kết DNA của protein MYB75/PAP1, điều này có khả năng gây mất hoạt động.

Từ khóa

#sucrose #anthocyanin #Arabidopsis thaliana #MYB75/PAP1 gene #gene expression #natural variation #recombinant inbred line #quantitative trait loci #mRNA accumulation #dihydroflavonol reductase #genetic complementation #knockout mutation #DNA-binding domain

Tài liệu tham khảo

Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J14:259–271

Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol134:81–91

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J39:366–380

Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell9:1169–1179

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell12:2383–2394

Chan MT, Yu SM (1998) The 3′ untranslated region of a rice alpha-amylase gene mediates sugar-dependent abundance of mRNA. Plant J15:685–695

Chandran D, Reinders A, Ward JM (2003) Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2. J Biol Chem278:44320–44325

Cheng WH, Taliercio EW, Chourey PS (1999) Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3′ untranslated region in a cell suspension culture of maize. Proc Natl Acad Sci USA96:10512–10517

Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA95:4784–4788

Ciereszko I, Johansson H, Kleczkowski LA (2001) Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J354:67–72

Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta206:131–137

Fernie AR, Roessner U, Geigenberger P (2001) The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. Plant Physiol125:1967–1977

Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol8:93–102

Gollop R, Even S, Colova-Tsolova V, Perl A (2002) Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J Exp Bot53:1397–1409

Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci161:579–588

Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ25:1261–1269

Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci164:259–265

Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J34:733–739

Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell7:1071–1083

Jefferson R, Goldsbrough A, Bevan M (1990) Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol14:995–1006

Jia L, Clegg MT, Jiang T (2003) Excess non-synonymous substitutions suggest that positive selection episodes occurred during the evolution of DNA-binding domains in the Arabidopsis R2R3-MYB gene family. Plant Mol Biol52:627–642

Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol47:509–540

Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol55:141–172

Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, et al (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J16:263–276

Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, Sakurai T, Akiyama K, Kamiya A, Ito T, Shinozaki K (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J37:897–905

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics1:174–181

Larronde F, Krisa S, Decendit A, Cheze C, Merillon JM (1998) Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep17:946–950

Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot55:1221–1230

Loreti E, Alpi A, Perata P (2000) Glucose and disaccharide-sensing mechanisms modulate the expression of α-amylase in barley embryos. Plant Physiol123:939–948

Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol128:472–481

Mita S, Hirano H, Nakamura K (1997a) Negative regulation in the expression of a sugar-inducible gene in Arabidopsis thaliana — a recessive mutation causing enhanced expression of a gene for β-amylase. Plant Physiol114:575–582

Mita S, Murano N, Akaike M, Nakamura K (1997b) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J11:841–851

Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci3:212–217

Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science300:332–336

Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du ZJ, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem51:2992–2999

Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell12:1863–1878

Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol127:252–261

Peters JL, Constandt H, Neyt P, Cnops G, Zethof J, Zabeau M, Gerats T (2001) A physical amplified fragment-length polymorphism map of Arabidopsis. Plant Physiol127:1579–1589

Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci10:63–70

Reinbothe S, Mollenhauer B, Reinbothe C (1994) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell6:1197–1209

Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell (Suppl)14:S185–S205

Rook F, Bevan MW (2003) Genetic approaches to understanding sugar-response pathways. J Exp Bot54:495–501

Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J15:253–263

Sadka A, DeWald DB, May GD, Park WD, Mullet JE (1994) Phosphate modulates transcription of soybean VspB and other sugar-inducible genes. Plant Cell6:737–749

Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J8:659–671

Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol51:49–81

Strand A, Hurry V, Henkes S, Huner N, Gustafsson P, Gardestrom P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol119:1387–1398

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680

Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J42:218–235

Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y (1991) Sugar-dependent expression of the CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol97:1414–1421

van Ooijen JW (2000) MapQTL Version 4.0: Usefriendly Power in QTL Mapping: Addendum to the Manual of Version 3.0. Plant Research International, Wageningen, The Netherlands

Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci USA99:10876–10880

Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Merillon JM (2000) Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry53:659–665

Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell11:1337–1350

Weiss D (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol Plant110:152–157

Wenzler H, Mignery G, Fisher L, Park W (1989) Sucrose-regulated expression of a chimeric potato-tuber gene in leaves of transgenic tobacco plants. Plant Mol Biol13:347–354

Wiese A, Elzinga N, Wobbes B, Smeekens S (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell16:1717–1729

Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol126:485–493

Xiao WY, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol44:451–461

Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature425:521–525

Yokoyama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolc promoter of Agrobacterium-Rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet244:15–22

Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development130:4859–4869

Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J40:22–34