Subtilosin Prevents Biofilm Formation by Inhibiting Bacterial Quorum Sensing
Tóm tắt
Subtilosin, the cyclic lantibiotic protein produced by Bacillus subtilis KATMIRA1933, targets the surface receptor and electrostatically binds to the bacterial cell membrane. In this study, subtilosin was purified using ammonium sulfate ((NH4)2SO4) precipitation and purified via column chromatography. Subtilosin’s antibacterial minimum and sub-minimum inhibitory concentrations (MIC and sub-MIC) and anti-biofilm activity (biofilm prevention) were established. Subtilosin was evaluated as a quorum sensing (QS) inhibitor in Gram-positive bacteria using Fe(III) reduction assay. In Gram-negative bacteria, subtilosin was evaluated as a QS inhibitor utilizing Chromobacterium voilaceum as a microbial reporter. The results showed that Gardnerella vaginalis was more sensitive to subtilosin with MIC of 6.25 μg/mL when compared to Listeria monocytogenes (125 μg/mL). The lowest concentration of subtilosin, at which more than 90% of G. vaginalis biofilm was inhibited without effecting the growth of planktonic cells, was 0.78 μg/mL. About 80% of L. monocytogenes and more than 60% of Escherichia coli biofilm was inhibited when 15.1 μg/mL of subtilosin was applied. Subtilosin with 7.8–125 μg/mL showed a significant reduction in violacein production without any inhibitory effect on the growth of C. violaceum. Subtilosin at 3 and 4 μg/mL reduced the level of Autoinducer-2 (AI-2) production in G. vaginalis. However, subtilosin did not influence AI-2 production by L. monocytogenes at sub-MICs of 0.95–15.1 μg/mL. To our knowledge, this is the first report exploring the relationship between biofilm prevention and quorum sensing inhibition in G. vaginalis using subtilosin as a quorum sensing inhibitor.
Tài liệu tham khảo
Babasaki K, Takao T, Shimonishi Y et al (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603
Kawulka KE, Sprules T, Diaper CM et al (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemist 43:3385–3395. doi:10.1021/bi0359527
Van Kuijk S, Noll KS, Chikindas ML (2012) The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Lett Appl Microbiol 54:52–58. doi:10.1111/j.1472-765X.2011.03170.x
Turovskiy Y, Cheryian T, Algburi A et al (2012) Susceptibility of Gardnerella vaginalis biofilms to natural antimicrobials subtilosin, ε-poly-L-lysine, and lauramide arginine ethyl ester. Infect Dis Obstet Gynecol 2012:284762. doi:10.1155/2012/284762
Algburi A, Volski A, Chikindas ML (2015) Natural antimicrobials subtilosin and lauramide arginine ethyl ester synergize with conventional antibiotics clindamycin and metronidazole against biofilms of Gardnerella vaginalis but not against biofilms of healthy vaginal lactobacilli. Pathog Dis 73(5) doi: 10.1093/femspd/ftv018
Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiol 154:1845–1858. doi:10.1099/mic.0.2008/017871-0
Li J, Wang W, Xu SX et al (2011) Lactobacillus reuteri-produced cyclic dipeptides quenchagr-mediated expression of toxic shock syndrome toxin-1in staphylococci. Proc Nat Acad Sci 108:3360–3365. doi:10.1073/pnas.1017431108
McClean KH, Winson MK, Fish L (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol 143:3703–3711
Wattanavanitchakorn S, Prakitchaiwattana C, Thamyongkit P (2014) Rapid and simple colorimetric method for the quantification of AI-2 produced from Salmonella Typhimurium. J Microbiol Methods 99:15–21. doi:10.1016/j.mimet.2014.01.014
Sutyak KE, Wirawan RE, Aroutcheva AA et al (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074. doi:10.1111/j.1365-2672.2007.03626.x
de Man JD, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bact 23:130–135. doi:10.1111/j.1365-2672.1960.tb00188.x
O’Toole GA (2011) Microtiter dish biofilm formation assay. JoVE. 47. doi:10.3791/2437
Borucki MK, Peppin JD, White D et al (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Enviro Microbiol 69:7336–7342. doi:10.1128/AEM.69.12.7336-7342.2003
Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52:269–274. doi:10.1111/j.1472-765X.2010.02993.x
Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511. doi:10.1128/CMR.00056-05
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098
Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225. doi:10.1016/j.ijantimicag.2011.05.004
Rossi LM, Rangasamy P, Zhang J et al (2008) Research advances in the development of peptide antibiotics. J Pharm Sci 97:1060–1070. doi:10.1002/jps.21053
Wimley W, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membrane Biol 239:27–34. doi:10.1007/s00232-011-9343-0
Das T, Sharma PK, Busscher HJ et al (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408. doi:10.1128/AEM.03119-09
Al Atya AK, Belguesmia Y, Chataigne G, Ravallec R, Vachée A, Szunerits S, Boukherroub R, Drider D (2016) Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Fron Microbiol 7:817. doi:10.3389/fmicb.2016.00817
Drider D, Bendali F, Naghmouchi K et al (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 1:1–6. doi:10.1007/s12602-016-9223-0
Overhage J, Campisano A, Bains M et al (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182. doi:10.1128/IAI.00318-08
Sutyak KE, Anderson RA, Dover SE et al (2008) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758. doi:10.1155/2008/540758
Torres NI, Noll KS, Xu S et al (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins 5:26–35. doi:10.1007/s12602-012-9123-x
Noll KS, Prichard MN, Khaykin A et al (2012) The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother 56:1756–1761. doi:10.1128/AAC.05861-11
Wiedemann I, Breukink E, van Kraaij C et al (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779. doi:10.1074/jbc.M006770200
Noll KS, Sinko PJ, Chikindas ML (2011) Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob Proteins 3:41–47. doi:10.1007/s12602-010-9061-4
Varga ZG, Armada A, Cerca P et al (2012) Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In Vivo 26:277–285
Daines DA, Bothwell M, Furrer J et al (2005) Haemophilus influenzae luxS mutants form a biofilm and have increased virulence. Microb Pathog 39:87–89. doi:10.1016/j.micpath.2005.06.003
McNab R, Ford SK, El-Sabaeny A et al (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284. doi:10.1128/JB.185.1.274-284.2003
Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649. doi:10.1128/IAI.70.5.2640-2649.2002
Cole SP, Harwood J, Lee R et al (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186:3124–3132. doi:10.1128/JB.186.10.3124-3132.2004
Tannock GW, Ghazally S, Walter J et al (2005) Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol 71:8419–8425. doi:10.1128/AEM.71.12.8419-8425.2005
Xu L, Li H, Vuong C et al (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74:488–496. doi:10.1128/IAI.74.1.488-496.2006
Sela S, Frank S, Belausov E et al (2006) A mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl Environ Microbiol 72:5653–5658. doi:10.1128/AEM.00048-06
Hardie KR, Heurlier K (2008) Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 6:635–643. doi:10.1038/nrmicro1916
Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210