Subject Matter Analysis with a Perspective on Teacher Education – The Case of Galois Theory as a Theory of Symmetry
Tóm tắt
Since Felix Kleins’ influential statement on “Elementary Mathematics from an Higher Standpoint” many scholars have discussed the role of mathematical knowledge in teacher education and generated diverse arguments for selecting and delivering university subject matter courses. This article contributes to the discussion by considering the special case of Galois Theory. It conducts a subject matter analysis of Galois Theory by drawing on several frameworks from general didactics, subject matter didactics and teacher competence, and by presenting a concrete university course that emphasizes the idea of symmetry and connections to school mathematics (also available as a Klein-Vignette, Leuders 2016b). Thereby it proposes an example for a “Subject Matter Analysis with a Perspective on Education and Teachers”.
Tài liệu tham khảo
Ableitinger, C., Kramer, J., & Prediger, S. (Eds.) (2013). Zur doppelten Diskontinuität in der Gymnasiallehrerbildung. Wiesbaden: Springer.
Aebli, H. (1961). Grundformen des Lehrens; ein Beitrag zur psychologischen Grundlegung der Unterrichtsmethode. Stuttgart: E. Klett.
Arnold, K.-H. (2012). Didactics, didactic models and learning. In N. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 986–990). Heidelberg: Springer.
Arnold, K.-H., & Lindner-Müller, C. (2012). The German Tradition in General Didactics: Its origins, major concepts, approaches, and perspectives. Jahrbuch für Allgemeine Didaktik, 2, 46–64.
Artigue, M. (1994). Didactical engineering as a framework for the conception of teaching products. In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 27–39). Dordrecht: Kluwer Academic Publishers.
Artin, E. (1942). Galois theory. Notre dame mathematical lectures. Notre Dame: University of Notre Dame Press.
Ball, D. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary school mathematics. The Elementary School Journal, 93(4), 373–397.
Ball, D., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical futures. Paper prepared based on keynote address at the 43rd Jahrestagung für Didaktik der Mathematik held in Oldenburg, Germany. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2009 (pp. 11–22). Münster: WTM-Verlag.
Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching what makes it special? Journal of teacher education, 59(5), 389–407.
Bewersdorff, J. (2006). Galois theory for beginners: a historical perspective. Providence: American Mathematical Society.
Biehler, R. (2005). Reconstruction of meaning as a didactical task – the concept of function as an example. In J. Kilpatrick, C. Hoyles, O. Skovsmose, & P. Valero (Eds.), Meaning in mathematics education (pp. 61–81). New York: Springer.
Blankertz, H. (1969). Theorien und Modelle der Didaktik. München: Juventa.
Blum, W., & Kirsch, A. (1991). Preformal proving: Examples and reflections. Educational Studies in Mathematics, 22, 183–203.
Carlson, M. P., & Rasmussen, C. (2008). Making the connection: Research and teaching in undergraduate mathematics education. Washington: Mathematical Assiociation of America.
Carter, N. C. (2009). Visual group theory. Washington: Mathematical Association of America.
Conference Board of the Mathematical Sciences (2012). The mathematical education of teachers II. Providence and Washington: American Mathematical Society and Mathematical Association of America.
Conrad, K. (2010). Galois groups of cubics and quartics (not in characteristic 2). Expository papers. http://www.math.uconn.edu/~kconrad/blurbs. Accessed 1 Dec 2015.
Cuoco, A. (2001). Mathematics for teaching. Notices of the AMS, 48(2), 168–174.
Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25.
Dubinsky, E., & McDonald, M. A. (2002). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton et al. (Ed.), The teaching and learning of mathematics at university level (pp. 275–282). Dordrecht: Kluwer.
Edwards, H. M. (1984). Galois theory. New York: Springer.
Edwards, H. M. (2011). Galois’s Version of Galois Theory. Talk Presented at the Galois Bicentennial, Institut Henri Poincaré, Paris, October 24, 2011.
Fauvel, J., Maanen, J., & Maanen, J. van (2000). History in mathematics education: An ICMI study. Dordrecht: Kluwer.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Springer.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.
Freudenthal, H. (1980). Weeding and sowing: preface to a science of mathematical education. Dordrecht: Reidel.
Gaal, L. (1971). Classical Galois theory, with examples. Chicago: Markham Pub. Co.
Galois, É. (1846). Oeuvres mathématiques d’Évariste Galois. Journal des mathématiques pures et appliquées, XI, 381–444.
Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In K. G. J. Akker, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). London: Taylor Francis Group.
Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik als Wissenschaft. Zentralblatt für Didaktik der Mathematik (ZDM), 6(3), 115–119.
Grieser, D. (2007). Grundideen der Galois-Theorie: Eine Kurzeinführung für Interessierte (fast) ohne Vorkenntnisse. In A. Peter-Koop, & A. Bikner-Ahsbahs (Eds.), Mathematische Bildung. Hildesheim: Franzbecker.
Hamilton, D. (1999). The pedagogic paradox (or why no didactics in England?). Pedagogy, Culture and Society, 7(1), 135–152.
Hefendehl-Hebeker, L. (2013). Doppelte Diskontinuität oder die Chance der Brückenschläge. In C. Ableitinger, J. Kramer, & S. Prediger (Eds.), Zur doppelten Diskontinuität in der Gymnasiallehrerbildung (pp. 1–15). Wiesbaden: Springer Spektrum.
Heimann, P., Otto, G., & Schulz, W. (1969). Unterricht: Analyse und Planung. Hannover: Schroedel.
Hill, H. C., Ball, D., & Schilling, S. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372–400.
Holton, D. (Ed.). (2001). The teaching and learning of mathematics at university level: an ICMI study. vol. 7. Dordrecht: Kluwer Academic.
Jonassen, D. (1999). Designing constructivist learning environments. In C. Reigeluth (Ed.), Instructional-Design Theories and Models (pp. 215–239). Mahwah, New Jersey: Lawrence Erlbaum.
Kiernan, B. M. (1971). The development of Galois theory from Lagrange to Artin. Archive for History of Exact Sciences, 8(1–2), 40–154.
Kirsch, A. (1977). Aspects of simplification in mathematics teaching. In H. Athen & H. Kunle (Eds.), Proceedings of the Third International Congress on Mathematical Education (pp. 98–119). Karlsruhe: Zentralblatt für Didaktik der Mathematik. Reprint: Kirsch, A. (2000). Aspects of simplification in mathematics teaching. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice – the German didactic tradition (pp. 267–284). Mahwah: Lawrence Erlbaum Associates.
Kirsch, A. (2000). Aspects of simplification in mathematics teaching. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice. The German didaktik tradition (pp. 267–284). Mahwah: L. Erlbaum Associates.
Klafki, W. (1980). Zur Unterrichtsplanung im Sinne kritisch-konstruktiver Didaktik. Didaktische Modelle und Unterrichtsplanung (pp. 11–48). München: Juventa.
Klein, F. (1884). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Leipzig: Teubner.
Klein, F. (1908). Elementarmathematik vom höheren Standpunkte aus. Arithmetik, Algebra, Analysis (Vol. 1). Berlin: Julius Springer.
Klein, F. (1939). Elementary mathematics from an advanced standpoint, geometry (1908). New York: Dover.
Lagrange, J. L. (1770). Réflexions sur la résolution algébrique des équations. Mémoires de l’Académie de Berlin, 205–421.
Larsen, S., Johnson, E., & Bartlo, J. (2013). Designing and scaling up an innovation in abstract algebra. The Journal of Mathematical Behavior, 32(4), 693–711.
Lerner, L. (2011). Galois Theory without abstract algebra. arXiv preprint. http://arxiv.org/abs/1108.4593. Accessed 25 March 2016.
Leuders, T. (2015). Gruppen als Modelle – Horizontale und vertikale Mathematisierungsprozesse. In G. Kaiser, & H.-W. Henn (Eds.), Werner Blum und seine Beiträge zum Modellieren im Mathematikunterricht (pp. 217–231). Wiesbaden: Springer.
Leuders, T. (2016a). Erlebnis Algebra – zum aktiven Entdecken und selbstständigen Erarbeiten. Heidelberg: Springer.
Leuders, T. (2016b). How do I Solve this Equation? Look at the Symmetries! – The Idea behind Galois Theory. Retrieved from http://blog.kleinproject.org/?p=4016.
Leuders, T. (in press). Modern algebra as an integrating perspective on school mathematics – an interactive genetic and visual approach. In R. Göller, R. Biehler, R. Hochmuth, H.-G. Rück (Eds.). Didactics of Mathematics in Higher Education as a Scientific Discipline – Conference Proceedings, khdm-Report 16-05. Kassel: Universitätsbibliothek Kassel.
Lin, F., Yang, K., Lo, J., Tsamir, P., Tirosh, D., & Stylianides, G. J. (2012). Teachers’ professional learning on teaching proof and proving. In G. Hanna, & G. de Villiers (Eds.), Proof and proving in mathematics education. The 19th ICMI study (pp. 327–348). New York: Springer.
Lunsford, M. D. (2011). Galois’ Remarkable Subgroups. PRIMUS, 21(1), 91–98.
Merriënboer, J., & Kirschner, P. (2007). Ten steps to complex learning. A systematic approach to four-component instructional design. New York, London: Routledge.
Nahin, P. J. (1998). An imaginary tale: the story of \(\sqrt{-1}\). Princeton: Princeton University Press.
Neubrand, M. (1985). Hochschuldidaktische Ueberlegungen zum Fundamentalsatz der Algebra. Journal für Mathematik-Didaktik, 6(1), 45–66.
Neumann, O. (1997). Die Entwicklung der Galois-Theorie zwischen Arithmetik und Topologie (1850 bis 1960). Archive for History of Exact Sciences, 50(3–4), 291–329.
Pòlya, G. (1954). Mathematics and plausible reasoning. Induction and analogy in mathematics (Vol. 1). Oxford: Oxford University Press.
Reich, K. (2006). Konstruktivistische Didaktik. Lehr-und Studienbuch mit Methodenpool. Weinheim: Beltz.
Rowland, T., & Ruthven, K. (2011). Mathematical knowledge in teaching. Dordrecht: Springer.
Schwarz, B., & Kaiser, G. (2009). Professional competence of future mathematics teachers on argumentation and proof and how to evaluate it. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. De Villiers (Eds.), Proof and proving in mathematics education. ICMI study 19 conference proceedings (pp. 190–195). Taipei: National Taiwan Normal University.
Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational researcher, 15(2), 4–14.
Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23.
Sohlbach, W. (1998). Galois-Theorie für die Schule – oder: Wie beweist man dass ein Dreieck nicht mit Zirkel und Lineal konstruiert werden kann? Der Mathematikunterricht, 44(3), 36–50.
Stewart, I. (1973, 1988, 2004). Galois theory. London: Chapman and Hall.
Stewart, I. (2007). Why beauty is truth: a history of symmetry. New York: Basic Books.
Sträßer, R. (2013). Stoffdidaktik in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education. New York: Springer.
Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 3–21). Dordrecht: Kluwer.
Tignol, J.-P. (2001). Galois’ theory of algebraic equations. Singapore: World Scientific.
Toeplitz, O. (1949/1963). The Calculus: A Genetic apporach (translation of the German original 1949). Chicago: University of Chicago.
Valibouze A. (1999). Etude des relations algébriques entre les racines d’un polynôme d’une variable. Bulletin of the Belgian Mathematical Society, 6(4), 507–535.
Watson, A., & Barton, B. (2011). Teaching mathematics as the contextual application of mathematical modes of enquiry. In T. Rowldand, & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 65–82). Dordrecht: Springer.
Weber, K., & Larsen, S. (2008). Teaching and learning group theory. In M. P. Carlson, & C. Rasmussen (Eds.), Making the connection: research and teaching in undergraduate mathematics education (pp. 139–155). Washington: Mathematical Association of America.
Wittmann, E. C. (1989). The mathematical training of teachers from the point of view of education. Journal für Mathematik-Didaktik, 10(4), 291–308.
Wu, H. (1997). On the education of mathematics teachers. http://www.math.berkeley.edu/~wu. Accessed 1 Dec 2015.
Wu, H. (1999). On the education of mathematics majors. In E. Gavosto, S. G. Krantz, & W. G. McCallum (Eds.), Contemporary issues in mathematics education (vol. 36, pp. 9–23). Cambridge: University Press.
Zierer, K., & Seel, N. (2012). General Didactics and Instructional Design: eyes like twins A transatlantic dialogue about similarities and differences, about the past and the future of two sciences of learning and teaching. SpringerPlus, 1(1), 1–22.
Zierer, K. (Ed.) (2012). Jahrbuch für Allgemeine Didaktik 2012: International Perspectives on the German Didactics Tradition. Baltmannsweiler: Schneider Verlag Hohengehren.