Subharmonic Solutions with Prescribed Minimal Period of a Forced Pendulum Equation with Impulses

Acta Applicandae Mathematicae - Tập 158 Số 1 - Trang 125-137 - 2018
Fanchao Kong1
1School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui, 232001, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amster, P., De Napoli, P., Mariani, M.C.: An n $n$ -dimensional pendulum-like equation via topological methods. Nonlinear Anal. 60(2), 389–398 (2005)

Chen, H.W., Li, J.L., He, Z.M.: The existence of subharmonic solutions with prescribed minimal period for forced pendulum equations with impulses. Appl. Math. Model. 37, 4189–4198 (2013)

Fonda, A., Willem, M.: Subharmonic oscillations of forced pendulum type equations. J. Differ. Equ. 81, 215–220 (1989)

Hamel, G.: Ueber erzwungene Schingungen bei endlischen Amplituden. Math. Ann. 86, 1–13 (1922)

Lei, J.Z., Li, X., Yan, P., Zhang, M.R.: Twist character of the least amplitude periodic solution of the forced pendulum. SIAM J. Math. Anal. 35, 844–867 (2003)

Luo, Z.G., Xiao, J., Xu, Y.L.: Subharmonic solutions with prescribed minimal period for some second-order impulsive differential equations. Nonlinear Anal. 75, 2249–2255 (2012)

Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989)

Mawhin, J.: Global results for the forced pendulum equation. In: Cañada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations, vol. 1, pp. 533–589. Elsevier, Amsterdam (2004)

Offin, D.: Subharmonic oscillations for forced pendulum type equations. Differ. Integral Equ. 3, 965–972 (1990)

Xie, J.L., Luo, Z.G.: Subharmonic solutions with prescribed minimal period of an impulsive forced pendulum equation. Appl. Math. Lett. 52, 169–175 (2016)

Yu, J.S.: The minimal period problem for the classical forced pendulum equation. J. Differ. Equ. 247, 672–684 (2009)