Subcutaneous adipose tissue fatty acid desaturation in adults with and without rare adipose disorders

Lipids in Health and Disease - Tập 11 - Trang 1-11 - 2012
Jennifer K Yee1, Susan A Phillips2, Kambiz Allamehzadeh3, Karen L Herbst4
1Department of Pediatrics, Division of Endocrinology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, USA
2University of California, San Diego and Rady Children's Hospital San Diego, Department of Pediatrics, Division of Endocrinology, Veteran's Affairs San Diego Health Care System, San Diego, USA
3Veteren's Affairs San Diego Health Care System, San Diego, USA
4University of California, San Diego, Department of Internal Medicine, Division of Endocrinology, Veteren's Affairs San Diego Health Care System, San Diego, USA

Tóm tắt

Elevated stearoyl-CoA desaturase activity has been described in obese states, with an increased desaturation index (DI) suggesting enhanced lipogenesis. Differences in the DI among various phenotypes of abnormal adiposity have not been studied. Abnormal accumulation of subcutaneous adipose tissue occurs in rare adipose disorders (RADs) including Dercum's disease (DD), multiple symmetric lipomatosis (MSL), and familial multiple lipomatosis (FML). Examining the DI in subcutaneous fat of people with DD, MSL and FML may provide information on adipose tissue fatty acid metabolism in these disorders. The aims of this pilot study were: 1) to determine if differences in adipose tissue DIs are present among RADs, and 2) to determine if the DIs correlate to clinical or biochemical parameters. Subcutaneous adipose tissue was obtained from human participants with DD (n = 6), MSL (n = 5), FML (n = 8) and obese Controls (n = 6). Fatty acid composition was determined by gas chromatography/mass spectrometry. The DIs (palmitoleic/palmitic, oleic/stearic, vaccenic/stearic ratios) were calculated from the gas chromatogram peak intensities. SCD1 gene expression was determined. Spearman's correlations between the DIs and available clinical or biochemical data were performed. In DD subjects, the vaccenic/stearic index was lower (p < 0.05) in comparison to Controls. Percent of total of the saturated fatty acid myristic acid was higher in DD compared with Controls and FML. Percent of monounsaturated vaccenic acid in DD trended lower when compared with Controls, and was decreased in comparison to FML. In MSL, total percent of the polyunsaturated fatty acids was significantly lower than in the Control group (p < 0.05). In the total cohort of subjects, the palmitoleic/palmitic and oleic/stearic DIs positively correlated with age, BMI, and percent body fat. The positive associations between the DIs and measures of adiposity (BMI and percent body fat) support increased desaturase activity in obesity. The lower vaccenic/stearic DI in DD SAT compared with Controls suggests presence of other factors involved in fat accumulation in addition to lifestyle. Other mechanisms driving fat accumulation in DD such as inflammation or lymphatic dysfunction should be investigated.

Tài liệu tham khảo

Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM: Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res. 2002, 43: 1899-1907. 10.1194/jlr.M200189-JLR200 Yee JK, Lee WN, Han G, Ross MG, Desai M: Organ-specific alterations in fatty acid de novo synthesis and desaturation in a rat model of programmed obesity. Lipids Health Dis. 2011, 10: 72- 10.1186/1476-511X-10-72 Westcott ED, Mattacks CA, Windsor AC, Knight SC, Pond CM: Perinodal adipose tissue and fatty acid composition of lymphoid tissues in patients with and without Crohn's disease and their implications for the etiology and treatment of CD. Ann N Y Acad Sci. 2006, 1072: 395-400. 10.1196/annals.1326.034 Chen C, Shah YM, Morimura K, Krausz KW, Miyazaki M, Richardson TA, Morgan ET, Ntambi JM, Idle JR, Gonzalez FJ: Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 2008, 7: 135-147. 10.1016/j.cmet.2007.12.003 Pezeshkian M, Noori M, Najjarpour-Jabbari H, Abolfathi A, Darabi M, Shaaker M, Shahmohammadi G: Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab Syndr Relat Disord. 2009, 7: 125-131. 10.1089/met.2008.0056 Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM: Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005, 2: 251-261. 10.1016/j.cmet.2005.09.002 Warensjo E, Ohrvall M, Vessby B: Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis. 2006, 16: 128-136. 10.1016/j.numecd.2005.06.001 Gallo S, Egeland G, Meltzer S, Legault L, Kubow S: Plasma fatty acids and desaturase activity are associated with circulating adiponectin in healthy adolescent girls. J Clin Endocrinol Metab. 2010, 95: 2410-2417. 10.1210/jc.2009-1975 Brorson H, Fagher B: Dercum's disease. Fatty tissue rheumatism caused by immune defense reaction?. Lakartidningen. 1996, 93: 1430. 1433-1436. Herbst KL, Asare-Bediako S: Adiposis dolorosa is more than painful fat. Endocrinologist. 2007, 17: 326-344. 10.1097/TEN.0b013e31815942294. Campen R, Mankin H, Louis DN, Hirano M, Maccollin M: Familial occurrence of adiposis dolorosa. J Am Acad Dermatol. 2001, 44: 132-136. 10.1067/mjd.2001.110872 Mohar N: Familial multiple lipomatosis. Acta Derm Venereol. 1980, 60: 509-513. Rabbiosi G, Borroni G, Scuderi N: Familial multiple lipomatosis. Acta Derm Venereol. 1977, 57: 265-267. Ariel IM, Pack GT: Tumors of the soft somatic tissues. J Mt Sinai Hosp NY. 1957, 24: 690-705. Campen RB, Sang CN, Duncan LM: Case records of the Massachusetts General Hospital. Case 25-2006. A 41-year-old woman with painful subcutaneous nodules. N Engl J Med. 2006, 355: 714-722. 10.1056/NEJMcpc069018 Busetto L, Strater D, Enzi G, Coin A, Sergi G, Inelmen EM, Pigozzo S: Differential clinical expression of multiple symmetric lipomatosis in men and women. Int J Obes Relat Metab Disord. 2003, 27: 1419-1422. 10.1038/sj.ijo.0802427 Enzi G, Busetto L, Ceschin E, Coin A, Digito M, Pigozzo S: Multiple symmetric lipomatosis: clinical aspects and outcome in a long-term longitudinal study. Int J Obes Relat Metab Disord. 2002, 26: 253-261. 10.1038/sj.ijo.0801867 Klopstock T, Naumann M, Schalke B, Bischof F, Seibel P, Kottlors M, Eckert P, Reiners K, Toyka KV, Reichmann H: Multiple symmetric lipomatosis: abnormalities in complex IV and multiple deletions in mitochondrial DNA. Neurology. 1994, 44: 862-866. Veger HT, Ravensbergen NJ, Ottenhof A, da Costa SA: Familial multiple lipomatosis: a case report. Acta Chir Belg. 2010, 110: 98-100. Keskin D, Ezirmik N, Celik H: Familial multiple lipomatosis. Isr Med Assoc J. 2002, 4: 1121-1123. Herbst KL: Rare adipose disorders masquerading as obesity. Acta Pharmacol Sin. 2012, 33: 155-172. 10.1038/aps.2011.153 Mills CK: A case of adeno lipomatosis: with some remarks on the differential diagnosis of the affectation from adiposis dolorosa and other diseases. J Nerv Ment Dis. 1918, 36: 106-108. Herbst KL, Coviello AD, Chang A, Boyle DL: Lipomatosis-associated inflammation and excess collagen may contribute to lower relative resting energy expenditure in women with adiposis dolorosa. Int J Obes (Lond). 2009, 33. 10.1-1038. Hansson E, Svensson H, Stenram U, Brorson H: Histology of adipose tissue inflammation in Dercum's disease, obesity and normal weight controls: a case control study. J Inflamm (Lond). 2011, 8: 24-10.1186/1476-9255-8-24. 10.1186/1476-9255-8-24 Blomstrand R, Juhlin L, Nordenstam H, Ohlsson R, Werner B, Engstrom J: Adiposis dolorosa associated with defects of lipid metabolism. Acta Derm Venereol. 1971, 51: 243-250. Fagher B, Monti M, Nilsson-Ehle P, Akesson B: Fat-cell heat production, adipose tissue fatty acids, lipoprotein lipase activity and plasma lipoproteins in adiposis dolorosa. Clin Sci (Lond). 1991, 81: 793-798. Muller MM, Fuchs H, Schwarzmeier JD, Obiditsch-Mayer I, Freilinger G, Frank O: Biochemistry of benign-symmetrical lipomatosis (adenolipomatosis Launois-Bensaude, Madelung's disease). Wien Klin Wochenschr. 1976, 88: 94-101. Jeyakumar SM, Lopamudra P, Padmini S, Balakrishna N, Giridharan NV, Vajreswari A: Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab (Lond). 2009, 6: 27-10.1186/1743-7075-6-27. 10.1186/1743-7075-6-27 Yee JK, Mao CS, Hummel HS, Lim S, Sugano S, Rehan VK, Xiao G, Lee WN: Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells. J Lipid Res. 2008, 49: 2124-2134. 10.1194/jlr.M700600-JLR200 Garcia-Serrano S, Moreno-Santos I, Garrido-Sanchez L, Gutierrez-Repiso C, Garcia-Almeida JM, Garcia-Arnes J, Rivas-Marin J, Gallego-Perales JL, Garcia-Escobar E, Rojo-Martinez G: Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med. 2011, 17: 273-280. MacDonald ML, van Eck M, Hildebrand RB, Wong BW, Bissada N, Ruddle P, Kontush A, Hussein H, Pouladi MA, Chapman MJ: Despite antiatherogenic metabolic characteristics, SCD1-deficient mice have increased inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2009, 29: 341-347. 10.1161/ATVBAHA.108.181099 Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J, Falk W: Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 2009, 126: 233-245. 10.1111/j.1365-2567.2008.02892.x Mattacks CA, Sadler D, Pond CM: The effects of dietary lipids on dendritic cells in perinodal adipose tissue during chronic mild inflammation. Br J Nutr. 2004, 91: 883-892. 10.1079/BJN20041147 Collins JM, Neville MJ, Hoppa MB, Frayn KN: De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J Biol Chem. 2010, 285: 6044-6052. 10.1074/jbc.M109.053280 Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G: Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet. 2005, 37: 1072-1081. 10.1038/ng1642 Lange U, Oelzner P, Uhlemann C: Dercum's disease (Lipomatosis dolorosa): successful therapy with pregabalin and manual lymphatic drainage and a current overview. Rheumatol Int. 2008, 29: 17-22. 10.1007/s00296-008-0635-3 Solvonuk PF, Taylor GP, Hancock R, Wood WS, Frohlich J: Correlation of morphologic and biochemical observations in human lipomas. Lab Invest. 1984, 51: 469-474. Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K: Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr. 2005, 82: 747-750. Westcott E, Windsor A, Mattacks C, Pond C, Knight S: Fatty acid compositions of lipids in mesenteric adipose tissue and lymphoid cells in patients with and without Crohn's disease and their therapeutic implications. Inflamm Bowel Dis. 2005, 11: 820-827. Yamamoto K, Kiyohara T, Murayama Y, Kihara S, Okamoto Y, Funahashi T, Ito T, Nezu R, Tsutsui S, Miyagawa JI: Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn's disease. Gut. 2005, 54: 789-796. 10.1136/gut.2004.046516 Gutierrez-Juarez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP, Rossetti L: Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest. 2006, 116: 1686-1695. 10.1172/JCI26991 Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Oresic M, Yki-Jarvinen H: Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes. 2009, 58: 203-208. 10.2337/db08-1074 Hess D, Chisholm JW, Igal RA: Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010, 5: e11394- 10.1371/journal.pone.0011394 Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C, Allory Y, de la Taille A, Culine S, Blancou H: Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010, 9: 1740-1754. 10.1158/1535-7163.MCT-09-1064 Chajes V, Joulin V, Clavel-Chapelon F: The fatty acid desaturation index of blood lipids, as a biomarker of hepatic stearoyl-CoA desaturase expression, is a predictive factor of breast cancer risk. Curr Opin Lipidol. 2011, 22: 6-10. 10.1097/MOL.0b013e3283404552 Toy BR: Familial multiple lipomatosis. Dermatol Online J. 2003, 9: 9- Lowenstein JM, Brunengraber H, Wadke M: Measurement of rates of lipogenesis with deuterated and tritiated water. Methods Enzymol. 1975, 35: 279-287.